八. 实战:CUDA-BEVFusion部署分析-分析BEVFusion中各个ONNX

目录

    • 前言
    • 0. 简述
    • 1. camera.backbone.onnx(fp16)
    • 2. camera.backbone.onnx(int8)
    • 3. camera.vtransform.onnx(fp16)
    • 4. fuser.onnx(fp16)
    • 5. fuser.onnx(int8)
    • 6. lidar.backbone.xyz.onnx
    • 7. head.bbox.onnx(fp16)
    • 总结
    • 下载链接
    • 参考

前言

自动驾驶之心推出的《CUDA与TensorRT部署实战课程》,链接。记录下个人学习笔记,仅供自己参考

本次课程我们来学习下课程第八章——实战:CUDA-BEVFusion部署分析,一起来分析 BEVFusion 中各个 ONNX

课程大纲可以看下面的思维导图

在这里插入图片描述

0. 简述

本小节目标:分析 CUDA-BEVFusion 中各个 onnx 的输入输出,以及网络架构

这节给大家讲解第八章节第 7 小节,分析 BEVFusion 中的各个 onnx,这里我们拿 CUDA-BEVFusion 中导出好的 onnx 先看一看,一共有 5 个 onnx,对比看看 FP16 和 INT8 的 onnx 有什么区别,分析每个 onnx 的输入输出是什么以及它们之间是怎么连接的

1. camera.backbone.onnx(fp16)

我们先看 camera.backbone 部分,backbone 提供了两个,一个是 resnet 另一个是 swin transformer,我们这里以 resnet50 为例来讲解,我们主要看下输入输出就好了,主干部分是 resnet50 的结构,大家已经非常熟悉了

camera backbone 部分 fp16 的情况下需要看的东西并不是很多,需要注意的是 input 有两个,一个是 camera,一个是 LiDAR 到 camera 的 1ch depth map,output 也是有两个,一个是 camera feature(32ch),一个是 depth feature(118ch)

camera.backbone 的第一个输入是环视相机图像,以 nuscenes 数据集为例,相机个数为 6,高度为 256,宽度为 704,所以第一个输入的维度就是 1x6x3x256x704,如下图所示:

在这里插入图片描述

input1:camera
image(RGB)6 camera,3*256*704

通过变换矩阵将点云投影到相机上,这就是 camera.backbone 的第二个输入即 depth map,如下图所示:

在这里插入图片描述

input2:camera depth image
(1ch)6 camera,1*256*704

对于输出也有两个,大家可以回顾下上节课讲解的 BEVPool,它的输入就对应于这里的输出,如下图所示。一个是 camera_feature,维度是 6x32x88x80,分别代表着 NxHxWxC,另一个是 camera_depth_weights 即 depth 的概率图,维度是 6x118x32x88 分别代表着 NxDxHxW,这里的 D 表示对每一个特征像素 D 个 depth 的概率分布,图中 D 是 118,说明我们为图片上每个像素点估计 118 个深度值,之后对 118 个深度值做一个 softmax 看哪个点出现的可能性最大,这就是 camear backbone 的输出,它和普通的图像特征提取网络如 resnet 有所不同,多了一个深度概率分支

在这里插入图片描述

output:
camera feature:80chdepth feature:118ch

2. camera.backbone.onnx(int8)

接着我们再来看下 camera.backbone 的 INT8 的 onnx,camera backbone 部分如果是 int8 的话,我们可以看到在每一个 conv 前面都添加了 Q/DQ 节点,如下图所示,每一个 Q/DQ 节点都有对应的 scale 和 zero_shift,我们可以知道这一部分是经过 QAT 学习的,其余的没有变化(有关 QAT 学习如何添加这些 Q/DQ 节点有时间的话后面会介绍)

在这里插入图片描述

input1:camera
image(RGB)6 camera,3*256*704

可以看到每一个 Conv 前面都加了 Q/DQ 节点,每个 Conv 节点都有两个输入,一个是 activation value,一个是 weight,两个输入都需要加 Q/DQ,其实 Q/DQ 添加的过程并不是很复杂,通过 NVIDIA 提供的 pytorch_quantization 量化工具即可完成,这个我们在 TensorRT量化实战课YOLOv7量化:YOLOv7-PTQ量化(一) 中有提到过,大家感兴趣的可以看下

在这里插入图片描述

我们之前有讲过 TensorRT 里面对输入对 activation value 是 per-tensor 的量化粒度,每一个 tensor 只有一个 scale,这个大家可以从上图中看出来,y_scale 和 y_zero_point 都只有一个值,也就是 6x3x256x704 这整个 tensor 共用这一个 scale 和 zero_point

在这里插入图片描述

对于 weight 而言是 per-channel 的量化粒度,也就是说每个通道共享一个 scale 和 zero_point,这个我们从上图中也能看出来,可以看到 weight 的 Q 节点的 scale 有 64 个,对应的是 Conv 节点的 64 个通道

在这里插入图片描述

同时 zero_point 也是 64 个,只不过全为 0,如上图所示,那为什么都是 0 呢?这个我们在第五章节的时候也讲过,NVIDIA 将量化分为对称量化和非对称量化,NVIDIA 官方说如果要做非对称量化在部署阶段计算量比较大,也不好融合,所以 NVIDIA 在做量化时统一采用的是对称量化,因此 zero_point 就是 0 了

在这里插入图片描述

output:
camera feature:80chdepth feature:118ch

我们可以看其实并不是所有的节点都做了 INT8 量化,输出部分像 softmax、Transpose 就没有做 INT8 了,如上图所示

以上就是 camera.backbone 的 INT8 的 onnx 的整个结构了,值得注意的是在 resnet50int8/build 文件夹下有各种层的信息以及输出的日志文件,我们一起来看下,

在这里插入图片描述

camera.backbone.json

camera.backbone.json 文件中我们可以看到每个 layer 都有关于 INT8 量化的一些描述,我们重点来看下 camera.backbone.log,来看下层融合之后的精度

在这里插入图片描述

camera.backbone.log

我们可以看到 log 里面每个层每个节点的融合信息以及它们的精度的变化,大家可以打开简单看下

3. camera.vtransform.onnx(fp16)

我们看完 camera.backbone 之后我们来看 camera.vtransform,camera vtransform 的部分只有 fp16 的 onnx,需要看的东西并不是很多,需要注意的是,这个 vtransform 是针对 backbone 中输出进行的,三个 conv 将 360x360 大小的 input feature 进行特征学习 downsample 到 180x180

值得注意的是这里跨越了 BEVPool 这个部分,也就是说 camera.backbone 的两个输出经过 BEVPool 投影到 BEV 空间之后的输出才是作为 camera.vtransform 的输入

在这里插入图片描述

output:
80*360*360->80*180*180

4. fuser.onnx(fp16)

我们继续看,下一个是 fuser,fuser.onnx 的 fp16 模型比较简单,相比于 BEVFormer 来说 BEVFusion 的融合部分整体上只有 convolution 而没有像 BEVFormer 的 attention(spatial,temporal)。并且整体上相比于 backbone 而言,模型的深度也很浅,并且只有一个 BN,所有的 kernel 都是 3x3

在这里插入图片描述

input:
投影在 BEV 空间的 feature mapcamera 是 80ch,lidar 是 256ch估计是因为点云是 sparse 的,所以需要更大的 channel size

输入一个是 camera 一个是 lidar,camera 这边是 BEVPool 处理过投影到 BEV 上的 camera feature,维度是 1x80x180x180,lidar 这边是经过 SCN 网络提取后的 lidar feature,维度是 1x256x180x180

在这里插入图片描述

output:
通过多个 conv 将 camera feature 和 lidar feature 融合最终得到 180x180 Grid size 的 BEV 特征,ch 大小是 512

输出是融合后的 BEV 特征,维度是 1x512x180x180

5. fuser.onnx(int8)

fuser.onnx 的 int8 模型会稍微复杂一点,跟 camera.backbone(int8) 一样,每一个 conv 前都有 Q/DQ 节点,所有这里的 fuser 也是经过 QAT 进行学习到的,这里的权重已经能够在某种程度上适应 fp32->int8 的量化误差了

在这里插入图片描述

input:
投影在 BEV 空间的 feature mapcamera 是 80ch,lidar 是 256ch估计是因为点云是 sparse 的,所以需要更大的 channel size

在这里插入图片描述

output:
通过多个 conv 将 camera feature 和 lidar feature 融合最终得到 180x180 Grid size 的 BEV 特征,ch 大小是 512

6. lidar.backbone.xyz.onnx

我们再来看下 lidar.backbone.xyz.onnx 也就是点云特征提取网络的 onnx,这个其实就是 CenterPoint 的 SCN 架构直接导出的 ONNX

值得注意的是 lidar.backbone.xyz 的 onnx 比较特殊,因为这里使用的是自定义 onnx 节点,有两个自定义节点:

  • SparseConvolution
  • ScatterDense

所以在推理的时候会根据自定义 onnx 节点里的信息和输入 tensor 的信息进行推理

在这里插入图片描述

input:点云 tensor

在这里插入图片描述

output:
BEV-Grid:256*180*180

在这里插入图片描述

输入是经过处理后的点云 tensor 维度是 1x5,输出是 lidar feature 维度是 1x256x180x180,这个会输入到 fuser 模块与 camera 部分做融合得到融合后的 BEV 特征

自定义 SparseConvolution 节点里面包含了许多信息,如上图所示,这些信息将会在推理阶段用到,包括 activation,kernel_size,padding,rulebook,stride 等等

7. head.bbox.onnx(fp16)

最后我们看 head,head.bbox 部分是 fp16 推理的,使用 fuser 后的 512x180x180 的 feature map 进行前向推理,这里的 forward 过程的 onnx 详细部分没有必要看,我们只需要知道输出都有哪些:

  • height:[dim,1,200](3D 目标框的高度即 z 方向上的大小)
  • dim:[dim,3,200](3D 目标框的中心点即 center_x,center_y,center_z)
  • rot:[dim,2,200](rotation 即 sin 和 cos)
  • reg:[dim,2,200](3D 目标框的长宽即 x,y 方向上的大小)
  • vel:[dim,2,200](速度即 vx、vy,用来表示在哪个方向移动)
  • score:[dim,10,200](class confidence)

在这里插入图片描述

input:
在 BEV 空间上生成的特征图

在这里插入图片描述

output:
输出在 BEV 空间上的 3D BBox 的各种信息(高度、深度、坐标、得分等等)

在这里插入图片描述

输入是 1x512x180x180,也就是融合后的 BEV 特征,输出有 6 个,相关含义上面已经提到过了

以上就是 BEVFusion 中的各个 onnx 的分析,我们知道了每个 onnx 的输入输出以及如何衔接之后,再去阅读代码会相对简单一些

总结

这节课程我们主要学习了 BEVFusion 中的各个 onnx,分析了每个 onnx 的输入输出以及它们之间是怎么衔接的,主要包括 camera.backbone、camera.vtransform、fuser、lidar.backbone.xyz、head 五个 onnx,我们还分析了不同精度下的 onnx 差异,主要对比了 FP16 和 INT8 两种精度,INT8 下的 onnx 都插入了 Q/DQ 节点来做量化工作。

OK,以上就是第 7 小节有关 BEVFusion 中各个 onnx 分析的全部内容了,下节我们来学习 CUDA-BEVFusion 推理框架设计模式,敬请期待😄

下载链接

  • 论文下载链接【提取码:6463】
  • 数据集下载链接【提取码:data】
  • 代码和安装包下载链接【提取码:cuda】

参考

  • TensorRT量化实战课YOLOv7量化:YOLOv7-PTQ量化(一)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/717121.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unity UGUI之Scrollbar基本了解

Unity的Scrollbar组件是用于在UI中创建滚动条的组件之一。滚动条通常与其他可滚动的UI元素(如滚动视图或列表)一起使用,以便用户可以在内容超出可见区域时滚动内容。 以下是Scrollbar的基本信息和用法: 1、创建 在Unity的Hierarchy视图中右…

jetson nano——编译安装opencv==4.4

目录 1.下载源码,我提供的链接如下:1.1文件上传的路径位置,注意ymck是我自己的用户名(你们自己换成你们自己相对应的就行) 2.解压文件3.安装依赖4.增加swap交换内存4.1临时增加交换内存swap4.2永久增加swap 5.安装open…

2024-03-03 作业

作业要求: 1.使用fwrite、fread将一张随意的bmp图片,修改成德国的国旗 2.使用提供的getch函数,编写一个专门用来输入密码的函数,要求输入密码的时候,显示 * 号,输入回车的时候,密码输入结束 作业…

【MySQL】索引(重点)-- 详解

一、索引 没有索引,可能会有什么问题? 索引 :提高数据库的性能,索引是物美价廉的东西了。不用加内存,不用改程序,不用调 sql ,只要执行正确的 create index ,查询速度就可能提高成…

加密与安全_探索数字证书

文章目录 Pre概述使用keytool生成证书使用Openssl生成证书 (推荐)证书的吊销小结 Pre PKI - 借助Nginx 实现Https 服务端单向认证、服务端客户端双向认证 PKI - 04 证书授权颁发机构(CA) & 数字证书 PKI - 数字签名与数字证…

java面试题(spring框架篇)(黑马 )

树形图: 一、Spring框架种的单例bean是线程安全吗? Service Scope("singleton") public class UserServiceImpl implements UserService{ } singleton:bean在每个Spring IOC容器中只有一个实例 protype:一个bean的定义可以有多个…

【Web安全靶场】xss-labs-master 1-20

xss-labs-master 其他靶场见专栏 文章目录 xss-labs-masterlevel-1level-2level-3level-4level-5level-6level-7level-8level-9level-10level-11level-12level-13level-14level-15level-16level-17level-18level-19level-20 level-1 第一关没有进行任何限制,get请求…

pytorch_神经网络构建6

文章目录 强化学习概念实现qLearning基于这个思路,那么解决这个问题的代码如下 强化学习概念 强化学习有一个非常直观的表现,就是从出发点到目标之间存在着一个连续的状态转换,比如说从状态一到状态456,而每一个状态都有多种的行为&#xff…

全国青少年软件编程(Python)等级考试试卷(一级) 测试卷2021年12月

第 1 题 【 单选题 】 下面程序的运行结果是什么?( ) a10 b5 ca*b print(c) A :10 B :15 C :50 D :5 正确答案:C 试题解析: 第 2 题 【 单选题 】 与a>b and b>c等价的是?( ) A…

Libevent的使用及reactor模型

Libevent 是一个用C语言编写的、轻量级的开源高性能事件通知库,主要有以下几个亮点:事件驱动( event-driven),高性能;轻量级,专注于网络,不如 ACE 那么臃肿庞大;源代码相当精炼、易读…

aop监控spring cloud接口超时,并记录到数据库

引入pom <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0…

宝塔面板安装各种组件以及部署应用服务

在linux服务器安装宝塔面板 一、从宝塔官网下载exe安装包&#xff0c;安装命令从宝塔官网&#xff08;https://www.bt.cn/&#xff09;获取 yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh二、安…

自动驾驶加速落地,激光雷达放量可期(上)

1 激光雷达应用广泛&#xff0c;汽车有望成最大催化 激光雷达&#xff08;LiDAR&#xff09;是一种主动遥感技术&#xff0c;通过测定传感器发出的激光在传感器与目标物体之间的传播距离&#xff0c;来分析目标地物表面的反射能量大小、反射波谱的幅度、频率和相位等信息&#…

一文扫盲:订单管理系统,订单是公司生命线。

hello&#xff0c;我是贝格前端工场&#xff0c;本期给大家分享订单管理系统的知识点&#xff0c;欢迎老铁们点赞、关注&#xff0c;如有需求可以私信我们。 一、什么是订单管理系统 单管理系统是一种用于管理和处理订单的软件系统。它通常用于企业、电子商务平台、零售店等需…

技术小知识:面向对象和过程的区别 ⑤

一、思想区别 面相对象&#xff1a;始终把所有事情思考归类、抽离封装成对象来调用完成。 面向过程&#xff1a;直接平铺展开按顺序执行完成任务。 面向对象多了很多对象的创建、使用&#xff0c;销毁的过程资源消耗。是一种模块化编程思想。 https://www.cnblogs.com/kuangmen…

网络爬虫弹幕

1.分析网页&#xff0c;获取代码&#xff0c;提取时间 想要提取出弹幕所在的节点&#xff0c;我们要使用 Beautiful Soup 解析模块&#xff0c;需要从 bs4 中导入 BeautifulSoup 模块 创建一个 BeautifulSoup 对象&#xff0c;传入变量 xml 和解析器 lxml&#xff0c;将该对象赋…

2.2 mul、div、and、or乘除指令及所有寄存器英文名

汇编语言 1. mul乘指令 两个相乘的数&#xff0c;要么都是8位&#xff0c;要么都是16位 两个8位数相乘 一个默认放在al中&#xff0c;另一个放在8位reg或内存字节单元中8位乘法&#xff0c;结果默认放在ax中例如&#xff1a;计算100*10 100和10小于255&#xff0c;可以做8位…

信息系统安全与对抗-作业2

目录 1、使用自己姓名拼音创建一个账户&#xff0c; 并使用命令和图形化查看 2、使用自己拼音打头字母创建一个隐藏账户 &#xff0c;并使用命令和图形化查看 3、使用命令启动 telnet 服务 4、使用命令打开防火墙 23 端口 5、熟悉LINUX系统&#xff0c;使用命令行创建用户…

Spring Cloud Nacos集成Seata2.0 AT模式

Spring Cloud Nacos集成Seata2.0 AT模式 以CentOS 7为例&#xff0c;介绍Spring Cloud Nacos集成Seata2.0 AT模式的流程。分成两个步骤&#xff1a;1.安装配置seata-server、2.项目集成seata-client 一、下载seata-server安装包 根据自己的操作系统选择要下载的安装包格式&a…

2023年第十四届蓝桥杯大赛软件类省赛C/C++大学A组真题

2023年第十四届蓝桥杯大赛软件类省赛C/C大学A组部分真题和题解分享 文章目录 蓝桥杯2023年第十四届省赛真题-平方差思路题解 蓝桥杯2023年第十四届省赛真题-更小的数思路题解 蓝桥杯2023年第十四届省赛真题-颜色平衡树思路题解 蓝桥杯2023年第十四届省赛真题-买瓜思路题解 蓝桥…