Elasticsearch实战(四):Springboot实现Elasticsearch指标聚合与下钻分析open-API

文章目录

  • 系列文章索引
  • 一、指标聚合与分类
    • 1、什么是指标聚合(Metric)
    • 2、Metric聚合分析分为单值分析和多值分析两类
    • 3、概述
  • 二、单值分析API设计
    • 1、Avg(平均值)
      • (1)对所有文档进行avg聚合(DSL)
      • (2)对筛选后的文档聚合
      • (3)根据Script计算平均值
      • (4)总结
    • 2、Max(最大值)
      • (1)统计所有文档
      • (2)统计过滤后的文档
    • 3、Min(最小值)
      • (1)统计所有文档
      • (2)统计筛选后的文档
    • 4、Sum(总和)
      • (1)统计所有文档汇总
    • 5、Cardinality(唯一值)
      • (1)统计所有文档
      • (2)统计筛选后的文档
  • 三、多值分析API设计
    • 1、Stats Aggregation
      • (1)统计所有文档
      • (2)统计筛选文档
    • 2、扩展状态统计
      • (1)统计所有文档
      • (2)统计筛选后的文档
    • 3、百分位度量/百分比统计
      • (1)统计所有文档
      • (2)统计筛选后的文档
    • 4、百分位等级/百分比排名聚合
      • (1)统计所有文档
      • (2)统计过滤后的文档
  • 四、JavaAPI实现

系列文章索引

Elasticsearch实战(一):Springboot实现Elasticsearch统一检索功能
Elasticsearch实战(二):Springboot实现Elasticsearch自动汉字、拼音补全,Springboot实现自动拼写纠错
Elasticsearch实战(三):Springboot实现Elasticsearch搜索推荐
Elasticsearch实战(四):Springboot实现Elasticsearch指标聚合与下钻分析
Elasticsearch实战(五):Springboot实现Elasticsearch电商平台日志埋点与搜索热词

一、指标聚合与分类

1、什么是指标聚合(Metric)

聚合分析是数据库中重要的功能特性,完成对某个查询的数据集中数据的聚合计算,
如:找出某字段(或计算表达式的结果)的最大值、最小值,计算和、平均值等。
ES作为搜索引擎兼数据库,同样提供了强大的聚合分析能力。
对一个数据集求最大值、最小值,计算和、平均值等指标的聚合,在ES中称为指标聚合。

2、Metric聚合分析分为单值分析和多值分析两类

1、单值分析,只输出一个分析结果
min,max,avg,sum,cardinality(cardinality 求唯一值,即不重复的字段有多少(相当于mysql中的distinct)
2、多值分析,输出多个分析结果
stats,extended_stats,percentile,percentile_rank

3、概述

官网:https://www.elastic.co/guide/en/elasticsearch/reference/7.4/search-aggregations-metrics.html
语法:

"aggregations" : {"<aggregation_name>" : { <!--聚合的名字 -->"<aggregation_type>" : { <!--聚合的类型 --><aggregation_body> <!--聚合体:对哪些字段进行聚合 -->}[,"meta" : { [<meta_data_body>] } ]? <!--元 -->[,"aggregations" : { [<sub_aggregation>]+ } ]? <!--在聚合里面在定义子聚合-->}[,"<aggregation_name_2>" : { ... } ]* <!--聚合的名字 -->
}

openAPI设计目标与原则:
1、DSL调用与语法进行高度抽象,参数动态设计
2、Open API通过结果转换器支持上百种组合调用qurey,constant_score,match/matchall/filter/sort/size/frm/higthlight/_source/includes
3、逻辑处理公共调用,提升API业务处理能力
4、保留原生API与参数的用法

二、单值分析API设计

1、Avg(平均值)

从聚合文档中提取的价格的平均值。

(1)对所有文档进行avg聚合(DSL)

POST product_list_info/_search
{"size": 0,"aggs": {"result": {"avg": {"field": "price"}}}
}

以上汇总计算了所有文档的平均值。
“size”: 0, 表示只查询文档聚合数量,不查文档,如查询50,size=50
aggs:表示是一个聚合
result:可自定义,聚合后的数据将显示在自定义字段中

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"result": {"avg": {"field": "price"}}}}
}

(2)对筛选后的文档聚合

POST product_list_info/_search
{"size": 0,"query": {"term": {"onelevel": "手机通讯"}},"aggs": {"result": {"avg": {"field": "price"}}}
}

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"query": {"term": {"onelevel": "手机通讯"}},"aggs": {"result": {"avg": {"field": "price"}}}}
}

(3)根据Script计算平均值

es所使用的脚本语言是painless这是一门安全-高效的脚本语言,基于jvm的

#统计所有
POST product_list_info/_search?size=0
{"aggs": {"result": {"avg": {"script": {"source": "doc.evalcount.value"}}}}
}
结果:"value" : 599929.2282791147
"source": "doc['evalcount']"
"source": "doc.evalcount"
#有条件
POST product_list_info/_search?size=0
{"query": {"term": {"onelevel": "手机通讯"}},"aggs": {"czbk": {"avg": {"script": {"source": "doc.evalcount"}}}}
}
结果:"value" : 600055.6935087288

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"czbk": {"avg": {"script": {"source": "doc.evalcount"}}}}}
}

(4)总结

avg平均
1、统一avg(所有文档)
2、有条件avg(部分文档)
3、脚本统计(所有)
4、脚本统计(部分)

2、Max(最大值)

计算从聚合文档中提取的数值的最大值。

(1)统计所有文档

POST product_list_info/_search
{"size": 0,"aggs": {"result": {"max": {"field": "price"}}}
}

结果: “value” : 9.9999999E7

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"result": {"max": {"field": "price"}}}}
}

(2)统计过滤后的文档

POST product_list_info/_search
{"size": 0,"query": {"term": {"onelevel": "手机通讯"}},"aggs": {"result": {"max": {"field": "price"}}}
}

结果: “value” : 2474000.0

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"query": {"term": {"onelevel": "手机通讯"}},"aggs": {"czbk": {"max": {"field": "price"}}}}
}

结果: “value” : 2474000.0

3、Min(最小值)

计算从聚合文档中提取的数值的最小值。

(1)统计所有文档

POST product_list_info/_search
{"size": 0,"aggs": {"result": {"min": {"field": "price"}}}
}

结果:“value”: 0.0

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"result": {"min": {"field": "price"}}}}
}

(2)统计筛选后的文档

POST product_list_info/_search
{"size": 1,"query": {"term": {"onelevel": "手机通讯"}},"aggs": {"czbk": {"min": {"field": "price"}}}
}

结果:“value”: 0.0

参数size=1;可查询出金额为0的数据

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 1,"query": {"term": {"onelevel": "手机通讯"}},"aggs": {"result": {"min": {"field": "price"}}}}
}

4、Sum(总和)

(1)统计所有文档汇总

POST product_list_info/_search
{"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"sum": {"field": "price"}}}
}

结果:“value” : 3.433611809E7

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"sum": {"field": "price"}}}}
}

5、Cardinality(唯一值)

Cardinality Aggregation,基数聚合。它属于multi-value,基于文档的某个值(可以是特定的字段,也可以通过脚本计算而来),计算文档非重复的个数(去重计数),相当于sql中的distinct。

cardinality 求唯一值,即不重复的字段有多少(相当于mysql中的distinct)

(1)统计所有文档

POST product_list_info/_search
{"size": 0,"aggs": {"result": {"cardinality": {"field": "storename"}}}
}

结果:“value” : 103169

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"result": {"cardinality": {"field": "storename"}}}}
}

(2)统计筛选后的文档

POST product_list_info/_search
{"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"cardinality": {"field": "storename"}}}
}

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"cardinality": {"field": "storename"}}}}
}

三、多值分析API设计

1、Stats Aggregation

Stats Aggregation,统计聚合。它属于multi-value,基于文档的某个值(可以是特定的数值型字段,也可以通过脚本计算而来),计算出一些统计信息(min、max、sum、count、avg 5个值)

(1)统计所有文档

POST product_list_info/_search
{"size": 0,"aggs": {"result": {"stats": {"field": "price"}}}
}返回
"aggregations" : {"result" : {"count" : 5072447,"min" : 0.0,"max" : 9.9999999E7,"avg" : 920.1537270512633,"sum" : 4.66743101232E9

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"result": {"stats": {"field": "price"}}}}
}

(2)统计筛选文档

POST product_list_info/_search
{"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"stats": {"field": "price"}}}
}

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"stats": {"field": "price"}}}}
}

2、扩展状态统计

Extended Stats Aggregation,扩展统计聚合。它属于multi-value,比stats多4个统计结果: 平方和、方差、标准差、平均值加/减两个标准差的区间

(1)统计所有文档

POST product_list_info/_search
{"size": 0,"aggs": {"result": {"extended_stats": {"field": "price"}}}
}
返回:
aggregations" : {"result" : {"count" : 5072447,"min" : 0.0,"max" : 9.9999999E7,"avg" : 920.1537270512633,"sum" : 4.66743101232E9,"sum_of_squares" : 2.0182209054045464E16,"variance" : 3.9779448262354884E9,"std_deviation" : 63070.950731977144,"std_deviation_bounds" : {"upper" : 127062.05519100555,"lower" : -125221.74773690302}

sum_of_squares:平方和
variance:方差
std_deviation:标准差
std_deviation_bounds:标准差的区间

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"result": {"extended_stats": {"field": "price"}}}}
}

(2)统计筛选后的文档

POST product_list_info/_search
{"size": 1,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"extended_stats": {"field": "price"}}}
}结果;
aggregations" : {"result" : {"count" : 12402,"min" : 0.0,"max" : 2474000.0,"avg" : 2768.595233833253,"sum" : 3.433611809E7,"sum_of_squares" : 6.445447222627729E12,"variance" : 5.120451870452684E8,"std_deviation" : 22628.41547800615,"std_deviation_bounds" : {"upper" : 48025.42618984555,"lower" : -42488.23572217905

sum_of_squares:平方和
variance:方差
std_deviation:标准差
std_deviation_bounds:标准差的区间

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 1,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"czbk": {"extended_stats": {"field": "price"}}}}
}

3、百分位度量/百分比统计

Percentiles Aggregation,百分比聚合。它属于multi-value,对指定字段(脚本)的值按从小到大累计每个值对应的文档数的占比(占所有命中文档数的百分比),返回指定占比比例对应的值。默认返回[1, 5, 25, 50, 75, 95, 99 ]分位上的值。

它们表示了人们感兴趣的常用百分位数值。

(1)统计所有文档

POST product_list_info/_search
{"size": 0,"aggs": {"result": {"percentiles": {"field": "price"}}}
}返回:
aggregations" : {"result" : {"values" : {"1.0" : 0.0,"5.0" : 15.021825109603165,"25.0" : 58.669333121791,"50.0" : 139.7398105623917,"75.0" : 388.2363222057536,"95.0" : 3630.78148822216,"99.0" : 12561.562823894474}}

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"result": {"percentiles": {"field": "price"}}}}
}

(2)统计筛选后的文档

POST product_list_info/_search
{"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"percentiles": {"field": "price"}}}
}

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"percentiles": {"field": "price"}}}}
}

4、百分位等级/百分比排名聚合

百分比排名聚合:这里有另外一个紧密相关的度量叫 percentile_ranks 。 percentiles 度量告诉我们落在某个百分比以下的所有文档的最小值。

(1)统计所有文档

统计价格在15元之内统计价格在30元之内文档数据占有的百分比

tips:
统计数据会变化
这里的15和30;完全可以理解万SLA的200;比较字段不一样而已

POST product_list_info/_search
{"size": 0,"aggs": {"result": {"percentile_ranks": {"field": "price","values": [15,30]}}}
}返回:
价格在15元之内的文档数据占比是4.92%
价格在30元之内的文档数据占比是12.72%
aggregations" : {"result" : {"values" : {"15.0" : 4.92128378837021,"30.0" : 12.724827959646579}}
}

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"aggs": {"result": {"percentile_ranks": {"field": "price","values": [15,30]}}}}
}

(2)统计过滤后的文档

POST product_list_info/_search
{"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"percentile_ranks": {"field": "price","values": [15,30]}}}
}

OpenAPI查询参数设计:

{"indexName": "product_list_info","map": {"size": 0,"query": {"constant_score": {"filter": {"match": {"threelevel": "手机"}}}},"aggs": {"result": {"percentile_ranks": {"field": "price","values": [15,30]}}}}
}

四、JavaAPI实现

调用metricAgg方法,传参CommonEntity 。

/** @Description: 指标聚合(Open)* @Method: metricAgg* @Param: [commonEntity]* @Update:* @since: 1.0.0* @Return: java.util.Map<java.lang.String,java.lang.Long>**/
public Map<Object, Object> metricAgg(CommonEntity commonEntity) throws Exception {//查询公共调用,将参数模板化SearchResponse response = getSearchResponse(commonEntity);//定义返回数据Map<Object, Object> map = new HashMap<Object, Object>();// 此处完全可以返回ParsedAggregation ,不用instance,弊端是返回的数据字段多、get的时候需要写死,下面循环map为的是动态获取keyMap<String, Aggregation> aggregationMap = response.getAggregations().asMap();// 将查询出来的数据放到本地局部线程变量中SearchTools.setResponseThreadLocal(response);//此处循环一次,目的是动态获取client端传来的【result】for (Map.Entry<String, Aggregation> m : aggregationMap.entrySet()) {//处理指标聚合metricResultConverter(map, m);}//公共数据处理mbCommonConverter(map);return map;
}
/** @Description: 查询公共调用,参数模板化* @Method: getSearchResponse* @Param: [commonEntity]* @Update:* @since: 1.0.0* @Return: org.elasticsearch.action.search.SearchResponse**/
private SearchResponse getSearchResponse(CommonEntity commonEntity) throws Exception {//定义查询请求SearchRequest searchRequest = new SearchRequest();//指定去哪个索引查询searchRequest.indices(commonEntity.getIndexName());//构建资源查询构建器,主要用于拼接查询条件SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();//将前端的dsl查询转化为XContentParserXContentParser parser = SearchTools.getXContentParser(commonEntity);//将parser解析成功查询APIsourceBuilder.parseXContent(parser);//将sourceBuilder赋给searchRequestsearchRequest.source(sourceBuilder);//执行查询SearchResponse response = client.search(searchRequest, RequestOptions.DEFAULT);return response;
}
/** @Description: 指标聚合结果转化器* @Method: metricResultConverter* @Param: [map, m]* @Update:* @since: 1.0.0* @Return: void**/
private void metricResultConverter(Map<Object, Object> map, Map.Entry<String, Aggregation> m) {//平均值if (m.getValue() instanceof ParsedAvg) {map.put("value", ((ParsedAvg) m.getValue()).getValue());}//最大值else if (m.getValue() instanceof ParsedMax) {map.put("value", ((ParsedMax) m.getValue()).getValue());}//最小值else if (m.getValue() instanceof ParsedMin) {map.put("value", ((ParsedMin) m.getValue()).getValue());}//求和else if (m.getValue() instanceof ParsedSum) {map.put("value", ((ParsedSum) m.getValue()).getValue());}//不重复的值else if (m.getValue() instanceof ParsedCardinality) {map.put("value", ((ParsedCardinality) m.getValue()).getValue());}//扩展状态统计else if (m.getValue() instanceof ParsedExtendedStats) {map.put("count", ((ParsedExtendedStats) m.getValue()).getCount());map.put("min", ((ParsedExtendedStats) m.getValue()).getMin());map.put("max", ((ParsedExtendedStats) m.getValue()).getMax());map.put("avg", ((ParsedExtendedStats) m.getValue()).getAvg());map.put("sum", ((ParsedExtendedStats) m.getValue()).getSum());map.put("sum_of_squares", ((ParsedExtendedStats) m.getValue()).getSumOfSquares());map.put("variance", ((ParsedExtendedStats) m.getValue()).getVariance());map.put("std_deviation", ((ParsedExtendedStats) m.getValue()).getStdDeviation());map.put("lower", ((ParsedExtendedStats) m.getValue()).getStdDeviationBound(ExtendedStats.Bounds.LOWER));map.put("upper", ((ParsedExtendedStats) m.getValue()).getStdDeviationBound(ExtendedStats.Bounds.UPPER));}//状态统计else if (m.getValue() instanceof ParsedStats) {map.put("count", ((ParsedStats) m.getValue()).getCount());map.put("min", ((ParsedStats) m.getValue()).getMin());map.put("max", ((ParsedStats) m.getValue()).getMax());map.put("avg", ((ParsedStats) m.getValue()).getAvg());map.put("sum", ((ParsedStats) m.getValue()).getSum());}//百分位等级else if (m.getValue() instanceof ParsedTDigestPercentileRanks) {for (Iterator<Percentile> iterator = ((ParsedTDigestPercentileRanks) m.getValue()).iterator(); iterator.hasNext(); ) {Percentile p = (Percentile) iterator.next();map.put(p.getValue(), p.getPercent());}}//百分位度量else if (m.getValue() instanceof ParsedTDigestPercentiles) {for (Iterator<Percentile> iterator = ((ParsedTDigestPercentiles) m.getValue()).iterator(); iterator.hasNext(); ) {Percentile p = (Percentile) iterator.next();map.put(p.getPercent(), p.getValue());}}}/** @Description: 公共数据处理(指标聚合、桶聚合)* @Method: mbCommonConverter* @Param: []* @Update:* @since: 1.0.0* @Return: void**/
private void mbCommonConverter(Map<Object, Object> map) {if (!CollectionUtils.isEmpty(ResponseThreadLocal.get())) {//从线程中取出数据map.put("list", ResponseThreadLocal.get());//清空本地线程局部变量中的数据,防止内存泄露ResponseThreadLocal.clear();}}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/71684.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序开发---事件的绑定

目录 一、事件的概念 二、小程序中常用的事件 三、事件对象的属性列表 四、bindtap的语法格式 &#xff08;1&#xff09;绑定tap触摸事件 &#xff08;2&#xff09;编写处理函数 五、在事件处理函数中为data中的数据赋值 六、事件传参 七、bindinput的语法格式 八、…

⛳ MVCC 原理详解

&#x1f38d;目录 ⛳ MVCC 原理详解&#x1f43e; 一、事务回顾&#x1f4d0; 1.1、什么是数据库事务&#xff0c;为什么要有事务&#x1f389; 1.2、事务包括哪几个特性&#xff1f;&#x1f38d; 1.3、事务并发存在的问题1.3.1、脏读1.3.2、不可重复读1.3.3、幻读 &#x1f…

Linux命令200例:Yum强大的包管理工具使用(常用)

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌。CSDN专家博主&#xff0c;阿里云社区专家博主&#xff0c;2023年6月csdn上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师&#xff0…

LeetCode 1123. Lowest Common Ancestor of Deepest Leaves【树,DFS,BFS,哈希表】1607

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

Fluidd摄像头公网无法正常显示修复一例

Fluidd摄像头在内网正常显示&#xff0c;公网一直无法显示&#xff0c;经过排查发现由于url加了端口号引起的&#xff0c;摄像头url中正常填写的是/webcam?actionsnapshot&#xff0c;或者/webcam?actionstream。但是由于nginx跳转机制&#xff0c;会被301跳转到/webcam/?ac…

Fair|Fur —— Geometry Nodes

目录 Groom Blend Groom Fetch Groom Pack Groom Unpack Groom Switch Guide Advect Guide Collide With VDB Guide Deform Guide Draw Guide Groom Guide Group Guid Grow to Surface Guide Initialize Guide Mask Guide Partition Guide Process Guide Skin…

09-JVM垃圾收集底层算法实现

上一篇&#xff1a;08-JVM垃圾收集器详解 1.三色标记 在并发标记的过程中&#xff0c;因为标记期间应用线程还在继续跑&#xff0c;对象间的引用可能发生变化&#xff0c;多标和漏标的情况就有可能发生。 这里我们引入“三色标记”来给大家解释下&#xff0c;把Gcroots可达性…

Java 内部类

目录 一、什么是内部类及为何要有内部类 二、四种内部类 1.成员内部类 成员内部类定义&#xff1a; 获取成员内部类对象的方法&#xff1a; 成员内部类获取外部类变量: 额外&#xff1a; 2.局部内部类 局部内部类定义: 如何实现内部类当中的方法&#xff1a; 3.静态内…

【opencv】多版本安装

安装opencv3.2.0以及对应的付费模块 一、安装多版本OpenCV如何切换 按照如下步骤安装的OpenCV&#xff0c;在CMakeLists.txt文件中&#xff0c;直接指定opencv的版本就可以找到相应版本的OpenCV&#xff0c;为了验证可以在CMakeLists.txt文件中使用如下指令输出版本验证&…

二、创建个人首页页面

简介 改造 App.vue 创建一个展示页面,实现一个可以轮播的功能效果。欢迎访问个人的简历网站预览效果 本章涉及修改与新增的文件:style.css、App.vue、assets 一、 自定义全局样式 将 style.css 中的文件样式内容替换为如下代码 /* 初始化样式 --------------------------…

数学建模:线性与非线性优化算法

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 数学建模&#xff1a;线性与非线性优化算法 优化算法是指在满足一定条件下,在众多方案中或者参数中最优方案,或者参数值,以使得某个或者多个功能指标达到最优,或使得系统的某些性能指标达到最大值或者最小…

python-爬虫-xpath方法-批量爬取王者皮肤图片

import requests from lxml import etree获取NBA成员信息 # 发送的地址 url https://nba.hupu.com/stats/players # UA 伪装 google header {User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.3…

CSS笔记(黑马程序员pink老师前端)盒子阴影,文字阴影

盒子阴影 属性值为box-shadow,盒子阴影不占空间,不影响盒子之间的距离. 值说明h-shadow必需,水平阴影位置,允许为负值v-shadow必需,水平阴影位置,允许为负值blur可选,模糊距离,数值越大影子越模糊spread可选,影子的尺寸color可选,影子的颜色inset可选, 将外阴影改为内阴影(省…

c++ lambda

语法 [capture](parameters) mutalble->return-type{statement};capture [] &#xff1a;什么也不捕获[] : 按值的方式捕获所有变量[&] : 按引用方式捕获所有变量[boo] &#xff1a; 值捕获boo的值[,&a] : 按值捕获所有局部变量&#xff0c;按引用捕获变量a[,&…

微服务04-Gateway网关

作用 身份认证&#xff1a;用户能不能访问 服务路由&#xff1a;用户访问到那个服务中去 负载均衡&#xff1a;一个服务可能有多个实例&#xff0c;甚至集群&#xff0c;负载均衡就是你的请求到哪一个实例上去 请求限流功能&#xff1a;对请求进行流量限制&#xff0c;对服务…

小程序路由传参的方法

小程序路由传参的方法有以下几种&#xff1a; Query参数传递&#xff1a;在跳转页面时&#xff0c;可以通过url后面加上?keyvalue的方式传递参数&#xff0c;例如&#xff1a;wx.navigateTo({url: /pages/detail/detail?id123}) 路由跳转传递&#xff1a;可以通过wx.navigat…

sklearn中make_blobs方法:聚类数据生成器

sklearn中make_blobs()方法参数&#xff1a; n_samples:表示数据样本点个数,默认值100 n_features:是每个样本的特征&#xff08;或属性&#xff09;数&#xff0c;也表示数据的维度&#xff0c;默认值是2。默认为 2 维数据&#xff0c;测试选取 2 维数据也方便进行可视化展示…

网格化下的服务熔断

文章目录 网格化下的服务熔断前言什么是服务熔断&#xff1f;为什么需要服务熔断&#xff1f;服务熔断的实现监控服务的可用性和响应时间断开连接重定向请求 结论 网格化下的服务熔断 前言 随着云计算、容器化、微服务等技术的发展&#xff0c;现代应用已经变得越来越复杂。这…

FPGA实战小项目2

基于FPGA的贪吃蛇游戏 基于FPGA的贪吃蛇游戏 基于fpga的数字密码锁ego1 基于fpga的数字密码锁ego1 基于fpga的数字时钟 basys3 基于fpga的数字时钟 basys3

Android 大图显示优化方案-加载Gif 自定义解码器

基于Glide做了图片显示的优化&#xff0c;尤其是加载Gif图的优化&#xff0c;原生Glide加载Gif图性能较低。在原生基础上做了自定义解码器的优化&#xff0c;提升Glide性能 Glide加载大图和Gif 尤其是列表存在gif时&#xff0c;会有明显卡顿&#xff0c;cpu和内存占用较高&…