【AI理论学习】语言模型:从Word Embedding到ELMo

语言模型:从Word Embedding到ELMo

  • ELMo原理
  • Bi-LM
  • 总结
  • 参考资料

本文主要介绍一种建立在LSTM基础上的ELMo预训练模型。2013年的Word2Vec及2014年的GloVe的工作中,每个词对应一个vector,对于多义词无能为力。ELMo的工作对于此,提出了一个较好的解决方案。不同于以往的一个词对应一个向量,是固定的。 在ELMo世界里,预训练好的模型不再只是向量对应关系,而是一个训练好的模型。使用时, 将一句话或一段话输入模型,模型会根据上线文来推断每个词对应的词向量。这样做之后明显的好处之一就是对于多义词,可以结合前后语境对多义词进行理解。比如apple,可以根据前后文语境理解为苹果公司或一种水果。可以说,ELMo的提出意味着从词嵌入(Word Embedding)时代进入了语境词嵌入(Contextualized Word-Embedding)时代。

ELMo原理

ELMo来自论文Deep contextualized word representations,它是”Embeddings from Language Models“的简称。从论文题目看,ELMo的核心思想主要体现在深度上下文(Deep Contextualized )上。与静态的词嵌入不同,ELMo除提供临时词嵌入之外,还提供生成这些词嵌入的预训练模型,所以在实际使用时,ELMo可以基于预训练模型,根据实际上下文场景动态调整单词的Word Embedding表示,这样经过调整后的Word Embedding更能表达在这个上下文中的具体含义,自然也就解决了多义词的问题。所以ELMo实现了一个由静态到动态的飞跃。

ELMo的实现主要涉及语言模型,当然,它使用的语言模型有点特别,因为它首先把输入转换为字符级别的Embedding,根据字符级别的Embedding来生成上下文无关的Word Embedding,然后使用双向语言模型(如Bi-LM)生成上下文相关的Word Embedding。

ELMo的整体模型结果如下图所示:
ELMo整体模型结构
从上图中可以看出,ELMo模型的处理流程可分为如下

  1. 输入句子
    句子维度为 B × W × C B\times W\times C B×W×C,其中B表示批量大小(batch_size),W表示一句话中的单词数num_words,C表示每个单词的最大字符数目(max_characters_per_token),可设置为某个固定值(如50或60)。在一个批量中,语句有长短,可以采用Padding方法对齐。

  2. 字符编码层
    输入语句首先经过一个字符编码层(Char Encoder Layer),ELMo实际是对字符进行编码,它会对每个单词中所有字符进行编码,得到这个单词的表示。输入维度是 B × W × C B\times W\times C B×W×C,经过字符编码层后的数据维度为 B × W × D B\times W\times D B×W×D。这里展开进一步说明:
    字符编码层
    如上图所示:

    • Char Embedding
      对每个字符进行编码,包括一些特殊字符,如单词的开始<bow>、单词的结束<eow>、句子的开始符<bos>、句子的结束符<eos>、单词补齐符<pow>和句子补齐符<pos>等,维度会变为 B ∗ W ∗ C ∗ d B*W*C*d BWCd,这里d表示字符的Embedding维度(char_embed_dim)
    • Multi-Scale CNN
      Char Embedding通过不同规模的一维卷积、池化等作用后,再经过激活层,最后进入拼接和修改状态层(Concat&Reshape)
    • Concat&Reshape
      把卷积后的结果进行拼接,使其形状变为 ( B , W , d 1 + . . . + d m ) (B,W,d1+...+dm) B,W,d1+...+dm,di表示第i个卷积的通道数
    • Highway Net
      Highway Net类似残差连接,这里有2个Highway层
    • Linear Projection
      该层为线性映射层:上一层得到的维度d1+…+dm比较长,经过该层后将维度映射到D,作为词嵌入输入后续的层中,这里输出维度为 B ∗ W ∗ D B*W*D BWD

注意:输入度量是字符而不是词汇,以便模型能捕捉词的内部结构信息。比如beauty和beautiful,即使不了解这两个词的上下文,双向语言模型也能够识别出它们在一定程度上的相关性。

  1. 双向语言模型
    对字符级语句编码后,该句子会经过双向语言模型(Bi-LM),模型内部先分开训练了两个正向和反向的语言模型,而后将其表征进行拼接,最终得到输出维度 ( L + 1 ) ∗ B ∗ W ∗ 2 D (L+1)*B*W*2D (L+1)BW2D,这里+1是加上最初的Embedding层,类似残差连接。

ELMo采用双向语言模型,即同时结合正向和反向的语言模型,其目标是最大化如下的log似然值:
log似然值
参数说明
然后,分别训练正向和反向的两个LM,最后把结果拼接起来。词向量层的参数 Θ x \Theta_x Θx和Softmax层参数 Θ \Theta Θ在前向和后向语言模型中是共享的,但LM正向与反向的参数是分开的。如下图所示:
双向语言模型
ELMo 利用正向和反向扫描句子计算单词的词向量,并通过级联的方式产生一个中间向量(下面会给出具体的级联方式)。通过这种方式得到的词向量可以捕获到当前句子的结构和该单词的使用方式。

值得注意是,ELMo 使用的 Bi-LM 与 Bi-LSTM 不同,虽然长得相似,但是 Bi-LM 是两个 LM 模型的串联,一个向前,一个向后;而 Bi-LSTM 不仅仅是两个 LSTM 串联,Bi-LSTM 模型中来自两个方向的内部状态在被送到下层时进行级联(注意下图的 out 部分,在 out 中进行级联),而在 Bi-LM 中,两个方向的内部状态仅从两个独立训练的 LM 中进行级联
Bi-LSTM

  1. 混合层
    得到各层的表征后,会经过一个混合层(Scalar Mixer),它会对前面这些层的表示进行线性融合,得出最终的ELMo向量,维度为 B ∗ W ∗ 2 D B*W*2D BW2D。·

Bi-LM

设一个序列有N个 token ( t 1 , t 2 , . . . , t N ) (t_1,t_2,...,t_N) (t1,t2,...,tN)(这里说 token 是为了兼容字符和单词,如上文所说,EMLo使用的是字符级别的Embedding)

对于一个前向语言模型来说,是基于先前的序列来预测当前 token: p ( t 1 , t 2 , . . . , t N ) = ∏ k = 1 N p ( t k ∣ t 1 , t 2 , . . . , t k − 1 ) p (t_1 ,t_2 ,...,t_N )=\prod_{k=1}^{N}{p( t_k|t_1 ,t_2 ,...,t_{k-1} )} p(t1,t2,...,tN)=k=1Np(tkt1,t2,...,tk1)
而对于一个后向语言模型来说,是基于后面的序列来预测当前 token: p ( t 1 , t 2 , . . . , t N ) = ∏ k = 1 N p ( t k ∣ t k + 1 , t k + 2 , . . . , t N ) p (t_1 ,t_2 ,...,t_N )=\prod_{k=1}^{N}{p( t_k|t_{k+1} ,t_{k+2} ,...,t_{N} )} p(t1,t2,...,tN)=k=1Np(tktk+1,tk+2,...,tN)可以用 h k , j → \overrightarrow{h_{k,j}} hk,j h k , j ← \overleftarrow{h_{k,j}} hk,j 分别表示前向和后向语言模型。

ELMo 用的是多层双向的 LSTM,所以我们联合前向模型和后向模型给出对数似然估计
∑ k = 1 N ( log ⁡ p ( t k ∣ t 1 , . . . , t k − 1 ; Θ x , Θ → L S T M , Θ s ) + log ⁡ p ( t k ∣ t k + 1 , . . . , t N ; Θ x , Θ ← L S T M , Θ s ) ) \sum_{k=1}^{N}(\log p(t_k | t_1,...,t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM},\Theta_s) + \log p(t_k | t_{k+1},...,t_{N}; \Theta_x, \overleftarrow{\Theta}_{LSTM},\Theta_s)) k=1N(logp(tkt1,...,tk1;Θx,Θ LSTM,Θs)+logp(tktk+1,...,tN;Θx,Θ LSTM,Θs))其中, Θ x \Theta_x Θx表示 token 的向量, Θ s \Theta_s Θs表示 Softmax 层对的参数, Θ → L S T M \overrightarrow{\Theta}_{LSTM} Θ LSTM Θ ← L S T M \overleftarrow{\Theta}_{LSTM} Θ LSTM表示前向和后向的LSTM 的参数。

我们刚说 ELMo 通过级联的方式给出中间向量(这边要注意两个地方:一个是级联,一个是中间向量),现在给出符号定义:对每一个 token t k t_k tk来说,一个 L 层的 ELMo 的 2L + 1 个表征: R k = { x k L M , h k , j → , h k , j ← ∣ j = 1 , . . , L } = { h k , j ∣ j = 0 , . . . , L } R_k=\{x_k^{LM},\overrightarrow{h_{k,j}},\overleftarrow{h_{k,j}} | j=1,..,L\} \\ =\{h_{k,j}| j=0,...,L\} Rk={xkLM,hk,j ,hk,j j=1,..,L}={hk,jj=0,...,L}其中, h k , 0 h_{k,0} hk,0表示输入层, h k , j = [ h k , j → ; h k , j ← ] h_{k,j} = [\overrightarrow{h_{k,j}}; \overleftarrow{h_{k,j}}] hk,j=[hk,j ;hk,j ]。(之所以是 2L + 1 是因为把输入层加了进来)

对于下游任务来说,ELMo 会将所有的表征加权合并为一个中间向量:
E L M o k = E ( R k ; Θ ) = γ ∑ j = 0 L s j h k , j L M ELMo_k=E(R_k;\Theta) = \gamma\sum_{j=0}^{L}s_jh_{k,j}^{LM} ELMok=E(Rk;Θ)=γj=0Lsjhk,jLM其中, s s s 是 Softmax 的结果,用作权重; γ \gamma γ 是常量参数,允许模型缩放整个 ELMo 向量,考虑到各个 Bi-LSTM 层分布不同,某些情况下对网络的 Layer Normalization 会有帮助。
ELMo

总结

ELMo预训练模型采用双向语言模型,该预训练模型能够随着具体语言环境更新词向量表示,即更新对应词的Embedding。当然,由于ELMo采用LSTM架构,因此,模型的并发能力、关注语句的长度等在大的语料库面前,不能完全适用。而且通过拼接(word embedding,Forward hidden state,backward hidden state)方式融合特征的方式,削弱了语言模型特征抽取的能力。

参考资料

  1. ELMo (Embeddings from Language Models)
  2. ELMo原理解析及简单上手使用
  3. Deep contextualized word representations(ELMO词向量理解)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/71635.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChartJS使用-环境搭建(vue)

1、介绍 Chartjs简约不简单的JavaScript的图表库。官网https://chart.nodejs.cn/ Chart.js 带有内置的 TypeScript 类型&#xff0c;并与所有流行的 JavaScript 框架 兼容&#xff0c;包括 React 、Vue 、Svelte 和 Angular 。 你可以直接使用 Chart.js 或利用维护良好的封装程…

使用Python 创建 AI Voice Cover

这篇文章提供了使用Python文本到语音库和音频处理库逐步创建歌曲的指南。我们一起为机器赋予声音 —— 使用Python制作AI生成的声音。 介绍 您是否曾经想过&#xff0c;如果您最喜欢的歌曲由机器人演唱会是什么样子&#xff1f;随着人工智能和语音合成的最新进展&#xff0c;现…

什么是原生IP?原生IP与住宅IP有何区别?

相信许多做跨境的都会接触到IP代理&#xff0c;比如电商平台、社媒平台、收款平台等等&#xff0c;都会检测IP。那也会经常听到一些词汇&#xff1a;原生IP、住宅IP&#xff0c;这两者之间有什么区别呢&#xff1f;什么业务需要用到呢&#xff1f;接下来带大家具体了解一下。 什…

时序预测 | MATLAB实现TCN-LSTM时间卷积长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现TCN-LSTM时间卷积长短期记忆神经网络时间序列预测 目录 时序预测 | MATLAB实现TCN-LSTM时间卷积长短期记忆神经网络时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 1.MATLAB实现TCN-LSTM时间卷积长短期记忆神经网络时间序列预测…

大数据课程L2——网站流量项目的算法分析数据处理

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解网站流量项目的算法分析; ⚪ 了解网站流量项目的数据处理; 一、项目的算法分析 1. 概述 网站流量统计是改进网站服务的重要手段之一,通过获取用户在网站的行为,可以分析出哪些内…

深度解读智能媒体服务的重组和进化

统一“顶设”的智能媒体服务。 邹娟&#xff5c;演讲者 大家好&#xff0c;首先欢迎各位来到LVS的阿里云专场&#xff0c;我是来自阿里云视频云的邹娟。我本次分享的主题为《从规模化到全智能&#xff1a;智能媒体服务的重组与进化》。 本次分享分为以上四部分&#xff0c;一是…

Web安全研究(四)

No Honor Among Thieves: A Large-Scale Analysis of Malicious Web Shells Stony Brook University Ruhr-University Bochum Web shell作为恶意脚本&#xff0c;攻击者将其上传到被攻陷的Web服务器&#xff0c;以远程执行任意命令、维护其访问权限并提升其特权。尽管在实践中它…

Kafka3.0.0版本——消费者(独立消费者消费某一个主题中某个分区数据案例__订阅分区)

目录 一、独立消费者消费某一个主题中某个分区数据案例1.1、案例需求1.2、案例代码1.3、测试 一、独立消费者消费某一个主题中某个分区数据案例 1.1、案例需求 创建一个独立消费者&#xff0c;消费firstTopic主题 0 号分区的数据&#xff0c;所下图所示&#xff1a; 1.2、案…

TCP/IP基础

前言&#xff1a; TCP/IP协议是计算机网络领域中最基本的协议之一&#xff0c;它被广泛应用于互联网和局域网中&#xff0c;实现了不同类型、不同厂家、运行不同操作系统的计算机之间的相互通信。本文将介绍TCP/IP协议栈的层次结构、各层功能以及数据封装过程&#xff0c;帮助您…

文心一言初体验,和ChatGPT语言理解能力比较

文章目录 第一个考验&#xff0c;语义理解第二个考验&#xff0c;历史问题的回答推荐阅读 百度旗下AI大模型文心一言宣布向全社会全面开放,所有用户都可以体验这款AI大模型了。要比较这两个语言模型&#xff0c;我们先设计好题目。 第一个考验&#xff0c;语义理解 题目1&…

Linux入门之多线程|线程的同步|生产消费模型

文章目录 一、多线程的同步 1.概念 2.条件变量 2.1条件变量概念 2.2条件变量接口 1.条件变量初始化 2.等待条件满足 3.唤醒等待 3.销毁条件变量 2.3条件变量demo 二、生产消费模型 1.生产消费模型 2.基于BlockQueue的生产者消费者模型 3.基于C用条件变量和互斥锁实…

LabVIEW对EAST长脉冲等离子体运行的陀螺稳态运行控制

LabVIEW对EAST长脉冲等离子体运行的陀螺稳态运行控制 托卡马克是实现磁约束核聚变最有希望的解决方案之一。电子回旋共振加热&#xff08;ECRH是一种对托卡马克有吸引力的等离子体加热方法&#xff0c;具有耦合效率高&#xff0c;功率沉积定位好等优点。陀螺加速器是ECRH系统中…

JAVA设计模式第十讲:SPI - 业务差异解决方案

JAVA设计模式第十讲&#xff1a;SPI - 业务差异解决方案 我们需要在不修改源代码的情况下&#xff0c;动态为程序提供一系列额外的特性。首先想到的是Spring的AOP技术来构建应用插件&#xff0c;但是在Java自带的插件中&#xff0c;就有完整的实现。SPI&#xff08;Service Pro…

Win7旗舰版64位桌面创建32位IE方法

很多Win7 64位旗舰版用户系统桌面上的IE8浏览器&#xff0c;打开后都是64位的&#xff0c;而很多网站并不兼容64位的IE浏览器&#xff0c;其实在Win764位系统中IE是分为64位和32位的&#xff0c;出现这样的情况可能是桌面上的IE图标指响的是64位的IE&#xff0c;我们只要重新添…

grid弹性布局 设置宽高一致

效果图如下&#xff1a; 例子&#xff1a;设置每行四列的弹性布局&#xff0c;每个盒子宽高相同&#xff0c;间距为10px .left_list{display: grid;grid-gap: 10px 10px;grid-template-columns: repeat(4,1fr);.list_item{height: 0;padding-bottom:100%;/*高度设置为0&#…

io和进程day03(文件IO、文件属性函数、目录相关函数)

今日任务 代码 #include <stdio.h> #include <string.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <unistd.h> #include <sys/types.h> #include <pwd.h> #include <dirent.h> #in…

【图文并茂】C++介绍之串

1.1串 引子—— ​ 字符串简称为串&#xff0c;串是由字符元素构成的&#xff0c;其中元素的逻辑关系也是一种线性关系。串的处理在计算机非数值处理中占用重要的地位&#xff0c;如信息检索系统&#xff0c;文字编辑等都是以串数据作为处理对象 串是由零个或多个字符组成的…

得心应手应对 OOM 的疑难杂症

Java全能学习面试指南&#xff1a;https://www.javaxiaobear.cn/ 前面我们提到&#xff0c;类的初始化发生在类加载阶段&#xff0c;那对象都有哪些创建方式呢&#xff1f;除了我们常用的 new&#xff0c;还有下面这些方式&#xff1a; 使用 Class 的 newInstance 方法。使用…

[Vue3 博物馆管理系统] 使用Vue3、Element-plus的Layout 布局构建组图文章

系列文章目录 第一章 定制上中下&#xff08;顶部菜单、底部区域、中间主区域显示&#xff09;三层结构首页 第二章 使用Vue3、Element-plus菜单组件构建菜单 第三章 使用Vue3、Element-plus走马灯组件构建轮播图 第四章 使用Vue3、Element-plus tabs组件构建选项卡功能 第五章…

PHP反序列化漏洞

一、序列化&#xff0c;反序列化 序列化&#xff1a;将php对象压缩并按照一定格式转换成字符串过程反序列化&#xff1a;从字符串转换回php对象的过程目的&#xff1a;为了方便php对象的传输和存储 seriallize() 传入参数为php对象&#xff0c;序列化成字符串 unseriali…