RocketMQ学习笔记一

课程来源:002-MQ简介_哔哩哔哩_bilibili (尚硅谷老雷,时长19h)

第1章 RocketMQ概述

1. MQ是什么?

2. MQ用途有哪些?

        限流削峰;异步解耦;数据收集。

3. 常见MQ产品有哪些&对比?

4. MQ常见协议?

JMS、STOMP、AMQP、MQTT;

需要说明的是,Kafka和RocketMQ是没有遵循这些协议的。RocketMQ有自己的协议。

5. RocketMQ发展历程?

RocketMQ是一个统一消息引擎、轻量级数据处理平台。

RocketMQ是一款阿里巴巴开源的消息中间件。2016年捐献给了apache软件基金会。

第2章 RocketMQ的安装与启动

一、基础概念

  • 消息(Message)
  • 主题(Topic)
  • 标签(Tag):为消息设置的标签,用于同一主题下区分不同类型的消息。来自同一业务单元的消息,可以根据不同业务目的在同一主题下设置不同标签。标签能够有效地保持代码的清晰度和连贯性,并优化RocketMQ提供的查询系统。消费者可以根据Tag实现对不同子主题的不同消费逻辑,实现更好的扩展性。Topic是消息的一级分类,Tag是消息的二级分类。如 Topic:货物,tag=上海,tag=江苏。
  • 队列(Queue):存储消息的物理实体。一个Topic中可以包含多个Queue,每个Queue中存放的就是该Topic的消息。一个Topic的Queue也被称为一个Topic中消息的分区(相当于Kafka中Partition的概念)。一个Topic的Queue中的消息只能被一个消费者组中的一个消费者消费。一个Queue中的消息不允许同一个消费者组中的多个消费者同时消费。

在学习参考其它相关资料时,还会看到一个概念:分片(Sharding)。分片不同于分区。在RocketMQ中,分片指的是存放相应Topic的Broker。每个分片中会创建出相应数量的分区,即Queue,每个Queue的大小都是相同的。

  • 消息标识(MessageId/Key):RocketMQ中每个消息拥有唯一的MessageId,且可以携带具有业务标识的Key,以方便对消息的查询。不过需要注意的是,MessageId有两个:在生产者send()消息时会自动生成一个MessageId(msgId),当消息到达Broker后,Broker也会自动生成一个MessageId(offsetMsgId)。msgId、offsetMsgId与key都称为消息标识。

msgId:由producer端生成,其生成规则为:producerIp + 进程pid + MessageClientIDSetter类的ClassLoader的hashCode + 当前时间 + AutomicInteger自增计数器;
offsetMsgId:由broker端生成,其生成规则为:brokerIp + 物理分区的offset(Queue中的偏移量);
key:由用户指定的业务相关的唯一标识。

二、系统架构

1. Producer:一个生产者组可以同时发送(生产)多个主题的消息。

2. Consumer:消息消费者都是以消费者组(Consumer Group)的形式出现的。消费者组是同一类消费者的集合,这类Consumer消费的是同一个Topic类型的消息。消费者组使得在消息消费方面,实现负载均衡(将一个Topic中的不同的Queue平均分配给同一个Consumer Group的不同的Consumer,注意,并不是将消息负载均衡)和容错(一个Consmer挂了,该Consumer Group中的其它Consumer可以接着消费原Consumer消费的Queue)的目标变得非常容易。消费者只能消费一个Topic的消息。

注意:消费者组中Consumer的数量应该小于等于订阅Topic的Queue数量。如果超出Queue数量,则多出的Consumer将不能消费消息。一个Topic类型的消息可以被多个消费者组同时消费。

3. Name Server:NameServer是一个Broker与Topic路由的注册中心,支持Broker的动态注册与发现。

RocketMQ的思想来自于Kafka,而Kafka是依赖了Zookeeper的。所以,在RocketMQ的早期版本,即在MetaQ v1.0与v2.0版本中,也是依赖于Zookeeper的。从MetaQ v3.0,即RocketMQ开始去掉了Zookeeper依赖,使用了自己的NameServer。

主要包括两个功能:
Broker管理:接受Broker集群的注册信息并且保存下来作为路由信息的基本数据;提供心跳检测机制,检查Broker是否还存活。
路由信息管理:每个NameServer中都保存着Broker集群的整个路由信息和用于客户端查询的队列信息。Producer和Conumser通过NameServer可以获取整个Broker集群的路由信息,从而进行消息的投递和消费。

  • 路由注册:NameServer通常也是以集群的方式部署。Broker节点启动时,轮询NameServer列表,与每个NameServer节点建立长连接,发起注册请求。Broker以心跳包的方式,上报给NameServer,以证明自己的存活状态,每30秒发送一次。心跳包中包含 BrokerId、Broker地址(IP+Port)、Broker名称、Broker所属集群名称等等。NameServer在接收到心跳包后,会更新心跳时间戳,记录这个Broker的最新存活时间。
  • 路由剔除:NameServer中有⼀个定时任务,每隔10秒就会扫描⼀次Broker表,查看每一个Broker的最新心跳时间戳距离当前时间是否超过120秒,如果超过,则会判定Broker失效,然后将其从Broker列表中剔除。
  • 路由发现:RocketMQ的路由发现采用的是Pull模型。当Topic路由信息出现变化时,NameServer不会主动推送给客户端,而是客户端定时拉取主题最新的路由。默认客户端每30秒会拉取一次最新的路由

扩展:
1)Push模型:推送模型。其实时性较好,是一个“发布-订阅”模型,需要维护一个长连接。而长连接的维护是需要资源成本的。该模型适合于的场景:

  • 实时性要求较高
  • Client数量不多,Server数据变化较频繁

2)Pull模型:拉取模型。存在的问题是,实时性较差。
3)Long Polling模型:长轮询模型。其是对Push与Pull模型的整合,充分利用了这两种模型的优势,屏蔽了它们的劣势。(如Nacos)

以上内容,详见讲义。

4. Broker:Broker充当着消息中转角色,负责存储消息、转发消息。Broker在RocketMQ系统中负责接收并存储从生产者发送来的消息,同时为消费者的拉取请求作准备。Broker同时也存储着消息相关的元数据,包括消费者组消费进度偏移offset、主题、队列等。

Kafka 0.8版本之后,offset是存放在Broker中的,之前版本是存放在Zookeeper中的。

4.1 模块构成

Remoting Module:整个Broker的实体,负责处理来自clients端的请求。而这个Broker实体则由以下模块构成。

Client Manager:客户端管理器。负责接收、解析客户端(Producer/Consumer)请求,管理客户端。例如,维护Consumer的Topic订阅信息。

Store Service:存储服务。提供方便简单的API接口,处理消息存储到物理硬盘和消息查询功能。

HA Service:高可用服务,提供Master Broker 和 Slave Broker之间的数据同步功能。

Index Service:索引服务。根据特定的Message key,对投递到Broker的消息进行索引服务,同时也提供根据Message Key对消息进行快速查询的功能。

4.2 集群部署

为了增强Broker性能与吞吐量,Broker一般都是以集群形式出现的。各集群节点中可能存放着相同
Topic的不同Queue。不过,这里有个问题,如果某Broker节点宕机,如何保证数据不丢失呢?其解决方案是,将每个Broker集群节点进行横向扩展,即将Broker节点再建为一个HA集群,解决单点问题。

Broker节点集群是一个主从集群,即集群中具有Master与Slave两种角色。Master负责处理读写操作请求,Slave负责对Master中的数据进行备份。当Master挂掉了,Slave则会自动切换为Master去工作。所以这个Broker集群是主备集群。一个Master可以包含多个Slave,但一个Slave只能隶属于一个Master。Master与Slave 的对应关系是通过指定相同的BrokerName、不同的BrokerId 来确定的。BrokerId为0表示Master,非0表示Slave。每个Broker与NameServer集群中的所有节点建立长连接,定时注册Topic信息到所有NameServer。

5. 工作流程

1)启动NameServer,NameServer启动后开始监听端口,等待Broker、Producer、Consumer连接。

2)启动Broker时,Broker会与所有的NameServer建立并保持长连接,然后每30秒向NameServer定时发送心跳包。

3)发送消息前,可以先创建Topic,创建Topic时需要指定该Topic要存储在哪些Broker上,当然,在创建Topic时也会将Topic与Broker的关系写入到NameServer中。不过,这步是可选的,也可以在发送消息时自动创建Topic。

4)Producer发送消息,启动时先跟NameServer集群中的其中一台建立长连接,并从NameServer中获取路由信息,即当前发送的Topic消息的Queue与Broker的地址(IP+Port)的映射关系。然后根据算法策略从队选择一个Queue,与队列所在的Broker建立长连接从而向Broker发消息。当然,在获取到路由信息后,Producer会首先将路由信息缓存到本地,再每30秒从NameServer更新一次路由信息。

5)Consumer跟Producer类似,跟其中一台NameServer建立长连接,获取其所订阅Topic的路由信息,然后根据算法策略从路由信息中获取到其所要消费的Queue,然后直接跟Broker建立长连接,开始消费其中的消息。Consumer在获取到路由信息后,同样也会每30秒从NameServer更新一次路由信息。不过不同于Producer的是,Consumer还会向Broker发送心跳,以确保Broker的存活状态。

另外,Topic的创建模式、读/写队列——这两个内容详见讲义。

三、单机安装与启动

克隆一台虚拟机,修改主机名和IP:

修改主机名命令:

[root@centos102 ~]# vim /etc/hostname 

修改IP命令:
[root@centos102 ~]# vim /etc/sysconfig/network-scripts/ifcfg-ens33 

老师还在Windows系统的hosts文件中进行了主机名和IP的映射配置(?)。

我可以直接使用centos101哦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/714700.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kaggle竞赛之Titanic存活预测2

提高代码规范性,基于上一个 baseline 的提高 import pandas as pd from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split#数据划分方法 from sklearn.ensem…

哪个超声波清洗机品牌值得入手?销量榜品牌值得选购!

在科技日益发展的今天,超声波清洗技术以其高效、便捷和深度清洁的特点,已经深入到生活的诸多领域,从精密仪器到珠宝首饰,从眼镜框到假牙,甚至是厨房用品的日常护理,都能见到超声波清洗机的身影。面对市场上…

无人机两次飞行的图像数据配准与几何校正方法研究

标题: 无人机两次飞行的图像数据配准与几何校正方法研究 摘要: 本文研究了利用无人机获取的两次飞行的图像数据进行配准与几何校正的方法。无人机航拍技术在地理信息获取和空间数据应用中具有重要意义,但由于飞行条件、摄影设备和环境等因素的影响,同一区域的不同飞行任务…

【基频提取算法-YIN】

本文对基频提取算法 YIN 做以介绍。如有表述不当之处欢迎批评指正。欢迎任何形式的转载,但请务必注明出处。 文章目录 1. 引言2. YIN 各模块代码讲解2.1. 差分函数的实现2.2. 累积均值归一化差分函数的实现2.3. 绝对阈值2.4. 抛物线插值2.5. 最优局部估计 3. 总结 1…

免杀实战-EDR对抗

文章目录 杀软分析BOF.NET 杀软分析 x64dgb简单调试发现该edr在r3环对ntdll.dll和kernel32.dll关键函数均存在hook,这里硬盘读取原来的dll进行重新加载,原理如图 loader // dllmain.cpp : 定义 DLL 应用程序的入口点。 #include "pch.h" #in…

DSI2协议之BTA行为理解

概念: DSI协议spec支持总线控制权在master和slave之间发生交换,即通过bus turn around来实现; BUS TURN AROUND: BTA 的实现是通过controller—>cdphy的turnrequest信号来实现; 关于控制器发出turnrequest给phy,phy通过lvds/trio线输出turnaround sequence如下图中…

LeetCode刷题笔记之二叉树(四)

一、二叉搜索树的应用 1. 700【二叉搜索树中的搜索】 题目: 给定二叉搜索树(BST)的根节点 root 和一个整数值 val。你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null 。代码&a…

BUGKU 本地管理员

打开环境,先F12查看看到一串代码。Base64解码一下,得到的应该是密码,然后输入admin | test123试一下 使用BP抓包,修改XFF,得到flag

将镜像上传到私有镜像仓库Harbor

首先你需要安装Harbor服务: https://blog.csdn.net/qq_50247813/article/details/136388229 客户端已经安装docker: https://docs.docker.com/engine/install/centos/ 在docker客户端登录 Harbor 我的Harbor 服务器地址: 192.168.44.161 账号…

关于编写测试用例的一些思考

测试用例是QA同学的基本功,每个人都有一套编写测试用例的体系,本文是作者结合自身的工作经验以及阅读一些测试相关的书籍后的一些看法,欢迎大家一起讨论学习。 测试设计 测试用例格式 面试中一些常见的问题 1.APP测试与服务端测试的区别&am…

微服务中的Feign:优雅实现远程调用的秘密武器(二)

本系列文章简介: 本系列文章将深入探讨Feign的特点、原理以及在微服务中的应用场景,帮助读者更好地理解和使用这个优秀的远程调用工具。无论您是初学者还是有经验的开发人员,本文都将为您揭示Feign的秘密,并带您一起走进微服务的世…

何恺明新作 l-DAE:解构扩散模型

何恺明新作 l-DAE:解构扩散模型 提出背景扩散模型步骤如何在不影响数据表征能力的同时简化模型?如何进一步推动模型向经典DAE靠拢?如何去除对生成任务设计的DDM中不适用于自监督学习的部分?如何改进DDM以专注于清晰图像表示的学习…

2024华为软件测试笔试面试真题,抓紧收藏不然就看不到了

一、选择题 1、对计算机软件和硬件资源进行管理和控制的软件是(D) A.文件管理程序 B.输入输出管理程序 C.命令出来程序 D.操作系统 2、在没有需求文档和产品说明书的情况下只有哪一种测试方法可以进行的(A) A.错误推测法测试…

Docker 快速入门实操教程(完结)

Docker 快速入门实操教程(完结) Docker,启动! 如果安装好Docker不知道怎么使用,不理解各个名词的概念,不太了解各个功能的用途,这篇文章应该会对你有帮助。 前置条件:已经安装Doc…

【Hadoop】在spark读取clickhouse中数据

读取clickhouse数据库数据 import scala.collection.mutable.ArrayBuffer import java.util.Properties import org.apache.spark.sql.SaveMode import org.apache.spark.sql.SparkSessiondef getCKJdbcProperties(batchSize: String "100000",socketTimeout: Strin…

IOS 发布遇到“Unable to authenticate with App Store Connect”错误咋解决?

问题: 在开发ios app后,先发布adhoc版本,测试通过后,再发布testflight版本测试,但是可能会遇到一下问题。 解决办法: 在Signing &Capabilities中,在ios下边要指定有发布权限的Team账号&a…

PAT (Basic Level) Practice | 判断题

判断题的评判很简单,本题就要求你写个简单的程序帮助老师判题并统计学生们判断题的得分。 输入格式 输入在第一行给出两个不超过 100 的正整数 N 和 M,分别是学生人数和判断题数量。第二行给出 M 个不超过 5 的正整数,是每道题的满分值。第…

pytorch基础2-数据集与归一化

专题链接:https://blog.csdn.net/qq_33345365/category_12591348.html 本教程翻译自微软教程:https://learn.microsoft.com/en-us/training/paths/pytorch-fundamentals/ 初次编辑:2024/3/2;最后编辑:2024/3/2 本教程…

迪杰斯特拉算法的具体应用

fill与memset的区别介绍 例一 #include <iostream> #include <algorithm> using namespace std; const int maxn500; const int INF1000000000; bool isin[maxn]{false}; int G[maxn][maxn]; int path[maxn],rescue[maxn],num[maxn]; int weight[maxn]; int cityn…

【深度学习数学基础】Hebbian图(Hebbian Graph)

Hebbian图&#xff08;Hebbian Graph&#xff09;是一种基于神经科学原理的网络结构&#xff0c;它受到唐纳德赫布&#xff08;Donald Hebb&#xff09;提出的赫布学习规则&#xff08;Hebb’s rule&#xff09;的启发。赫布学习规则是神经科学中描述神经元之间突触连接如何通过…