CMU15445实验总结(Spring 2023)

CMU15445实验总结(Spring 2023)

背景

菜鸟博主是2024届毕业生,学历背景太差,导致23年秋招无果,准备奋战春招。此前有读过LevelDB源码的经历,对数据库的了解也仅限于LevelDB。奔着”有对比才能学的深“的理念,以及缓解自身就业焦虑的想法,于是乎在2024.2.16日开始CMU15445(关系性数据库)实验之旅。截止到2.26日:将P2做完了。

因为C++的基础还凑合,而且时间紧迫,于是跳过了p0实验,建议之前没学过C++同学,可以做做p0以熟悉现代C++的语法。

课程主页链接:https://15445.courses.cs.cmu.edu/spring2023/

B站有一位up主“Moody-老师”,对着CMU15445的ppt按照自己的理解复现了每一次的讲座,链接如下:https://space.bilibili.com/23722270

Project #1 - Buffer Pool

总结

该模块是基于LRU-K Replacement Policy实现了一个内存池。简单来讲LRU-K Replacement Policy就是类似操作系统的内存页面置换。

P1模块实现的内存池,和LevelDB的Cache有相似的作用,只是LevelDB的Cache中实现的内存替换策略是最简单的LRU算法,同时,LevelDB并没有像本实验中那样一上来就分配那么多内存进行内存复用,而是采用了动态内存分配与释放的方式,新的Block(或者Table)加到Cache中时,使用malloc分配内存,淘汰时,使用free直接释放内存。可能这就是在BusTub中叫内存池,而在LevelDB中叫Cache的原因。

本实验进行的比较顺利,唯一主要弄清楚的是Frame和Page的区别。

  • Frame(4K): 就是内存页,相应的frame_id就是Buffer Manager最开始申请的每个内存页的唯一id号。

  • Page(4K): 就是磁盘页,相应的page_id就是磁盘上每一页的id号。

理清这两个术语,接下来直接复现本模块的业务代码即可。

  1. 在实现class BufferPoolManager时,可以实现一个NewFrameUnlocked成员函数,方便在BufferPoolManager中获得空闲内存页(Frame)。

  2. 明确class Page的读写锁是保护data_的,在class BufferPoolManager中无需对Page加读写锁,从实现上也可以想清楚这点。

Gradescope测试

关于6个Fail的解释

前三个是关于代码规范的测试,没有通过。。。

后三个是关于PageGuard的测试,我的实现参考了std::lock_guard,在构造时加读写锁、在析构时,解读写锁。但是因为出现了死锁,猜测测试程序可能不支持这么实现,但其实并没有错误。而且后续的B+树索引实验在使用PageGuard时并没有出现死锁。

gradescope测试

Project #2 - B+Tree

总结

该模块就是基于磁盘(结合Buffer Pool Manager)实现一个B+树的增删查改,另外要保证线程安全。

和LevelDB对比,LevelDB使用LSM Tree的结构,其数据结构使用的是跳表、内存按层的方式,每层内部存储SSTable文件的元数据,作为表级索引,SSTable文件尾部存储着数据块的索引,作为块级索引,而每个数据块的尾部存储着数据索引,作为数据索引。在检索一个key-value对时,由于LevelDB一层的各个部分之间是有序不重叠的,所以以二分为主。查询方面,可能LevelDB会略差,但是增删改,LevelDB可以做到“O(1)”(忽略内存插入跳表的操作)的时间复杂度,而使用B+的数据库增删查改时间复杂度都是O(logn)。LevelDB其实将真正的删改延迟到了压缩阶段。具体细节有兴趣的读者可以自行看LevelDB的源码。

B+树的实现

考虑到递归方式调试困难,我采用了迭代式实现了B+树

由于B+树只在叶节点存数据,所有迭代式只需要保存从根节点定位到key的路径然后根据规则进行调整即可。

约定:

  1. internal_page的kv关系如下:… key1 <= value1(value所代表的page中的key) < key2 <= value2 …

需了解的是:B+树internal_page,索引为0的entry,其key是无效value是有效。即,B+树internal_page中,key的数量 = value数量 - 1。而leaf page中,kv数量一样。也正是存在这种关系,使得在插入和删除时,internal page的处理更为复杂。

关于对我帮助很大的链接:

调试B+树可视化调试方式可以参考这篇文章:https://www.cnblogs.com/wangzming/p/17479777.html

经验贴:https://zhuanlan.zhihu.com/p/665802858?utm_id=0

B+树-查找

我实现了一个辅助函数:

INDEX_TEMPLATE_ARGUMENTS
void BPLUSTREE_TYPE::FindPath(const KeyType &key, Context& ctx, bool write, Transaction *txn)

可以查找key并保存路径。后面的插入和删除都用到了该函数。

流程如下:

从root_page开始,根据key找到leaf_page,同时保存沿路的internal_page。

官方提供的查找伪代码:

查找伪代码

B+树-插入

插入也是先调用FindPath记录并锁住沿路的page,然后自下而上迭代操作。

插入需要注意的是节点达到MAXSize时需要分裂。

对于leaf page的分裂

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>…

要分裂page_id为vn-1的leaf_page,流程如下:

  1. 以leaf_page的1/2处的kv作为分裂点,假设为<ki, vi>

  2. 将leaf_page节点中,索引为i(包括i)之后的所有的entry移动到new_leaf_page(index从0开始)中。

  3. 将leaf_page的next_page_id赋值给new_leaf_page的next_page_id。

  4. 将new_leaf_page_id赋值给leaf_page的next_page_id。

  5. 左孩子为vn-1(leaf_page的id),key为ki,右孩子为new_leaf_page_id(new_leaf_page的id)

  6. 将ki插到parent_page中。(即插到parent_page的index为n的地方)

分裂后parent_page的entry如下:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<ki, new_page_id>、<kn, vn> 、<kn+1, vn+1>…

由于new_leaf_page中index为0处key还是有效的,所以,leaf page的分裂中,分裂点ki是复制并上移的。

对于internal page的分裂

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>…

要分裂page_id为vn-1的internal_page,流程如下:

  1. 以internal_page的1/2处的kv作为分裂点,假设为<ki, vi>

  2. 将internal_page节点中,索引为i(包括i)之后的所有的entry移动到new_internal_page(index从0开始)中。

  3. 左孩子为vn-1(internal_page的id),key为ki,右孩子为new_internal_page_id(new_internal_page的id)

  4. 将ki插到parent_page中。(即插到parent_page的index为n的地方)

分裂后parent_page的entry如下:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<ki, new_page_id>、<kn, vn> 、<kn+1, vn+1>…

注意和leaf_page分裂时的区别。

由于new_internal_page中index为0处key是无效的,所以,internal page的分裂中,分裂点ki是上移的。

官方提供的插入伪代码:

插入伪代码1

插入伪代码2

Gradescope测试

关于3个Fail的解释

这三个是关于代码规范的测试,所以没有通过。

gradescope测试

B+树-删除

删除也是先调用FindPath记录并锁住沿路的page,然后自下而上迭代操作。

删除比较麻烦,需要考虑的情况比较多,但是一步一步,理清思路还是很好实现的。按规律来说,不能拆借就一定能合并,反之亦然。至于拆借和合并的时机,本文不过多赘述。

对于leaf page的拆借与合并

向left sibling拆借

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

page_id为vn-1的leaf_page向left sibling借其最右端的entry,流程如下:

  1. 找到left sibling的page_id假设中是vn-2。移除并获得其最右端的entryi,假设为<ki, vi>

  2. 根据上面的[约定1],将parent_page中的entryn-1(<kn-1, vn-1>)中的key更新为:ki。

  3. 将<ki, vi>插到page_id为vn-1的leaf page最前方。

向left sibling拆借后,parent_page的entry如下:

… 、<kn-2, vn-2>、<ki, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

向left sibling合并

我实现的合并,以大页向小页追加为原则

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

page_id为vn-1的leaf_page和left sibling合并,流程如下:

  1. 找到left sibling的page_id假设中是vn-2。

  2. 将leaf_page所有的entry都追加到left_sibling中去。

  3. 将leaf_page的next_page_id赋值给left sibling的next_page_id。

  4. 删除parent_page中index为n-1的entry。

和left sibling合并后,parent_page的entry如下:

… 、<kn-2, vn-2>、<kn, vn> 、<kn+1, vn+1>、…

向right sibling拆借

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

page_id为vn-1的leaf_page向right sibling借其最左端的entry,流程如下:

  1. 找到right sibling的page_id假设中是vn。移除并获得其最左端的entryi,假设为<ki, vi>,为方便将entryi的下一个entry设为entryi+1<ki+1, vi+1>。

  2. 根据上面的[约定1],将parent_page中的entryn(<kn, vn>)中的key更新为:ki+1。

  3. 将<ki, vi>插到page_id为vn-1的leaf page最后方。

向right sibling拆借后,parent_page的entry如下:

… 、<kn-2, vn-2>、<ki, vn-1>、<ki+1, vn> 、<kn+1, vn+1>、…

向right sibling合并

还是以大页向小页追加为原则

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

page_id为vn-1的leaf_page和right sibling合并,流程如下:

  1. 找到right sibling的page_id假设中是vn。

  2. 将right_sibling所有的entry都追加到leaf_page中去。

  3. 将right_sibling的next_page_id赋值给leaf_page的next_page_id。

  4. 删除parent_page中index为n的entry。

和right sibling合并后,parent_page的entry如下:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn+1, vn+1>、…

对于internal page的拆借与合并

向left sibling拆借

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

page_id为vn-1的internal_page向left sibling借其最右端的entry,流程如下:

  1. 找到left sibling的page_id假设中是vn-2。移除并获得其最右端的entryi,假设为<ki, vi>

  2. 根据上面的[约定1],parent_page的key更新如下:

    • entryn-1(<kn-1, vn-1>) -> entryn-1(<ki, vn-1>)
    • entryi(<ki, vi>) -> entryi(<kn-1, vi>)(描述成<vi, kn-1>更合适)
  3. 将<kn-1, vi>按kv关系插到page_id为vn-1的internal page最前方。

向left sibling拆借后,parent_page的entry如下:

… 、<kn-2, vn-2>、<ki, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

向left sibling合并

以大页向小页追加为原则

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

page_id为vn-1的internal_page和left sibling合并,流程如下:

  1. 找到left sibling的page_id假设中是vn-2。

  2. 将internal_page所有的entry(包括index为0,尽管key是无效的)都追加到left_sibling中去。

  3. 在left sibling中找到原来internal_page中index为0的entry(其key是无效key),将kn-1设为其key。

  4. 删除parent_page中index为n-1的entry。

和left sibling合并后,parent_page的entry如下:

… 、<kn-2, vn-2>、<kn, vn> 、<kn+1, vn+1>、…

向right sibling拆借

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

page_id为vn-1的internal_page向right sibling借其最左端的entry,流程如下:

  1. 找到right sibling的page_id假设中是vn。取right sibling的entry0的value,以及entry1的key,组成entryi,假设为<k1, v0>。(描述成<v0, k1>更合适)

  2. 根据上面的[约定1],parent_page的key更新如下:

    • entryn(<kn, vn>) -> entryn(<k1, vn>)
    • entryi(<k1, v0>) -> entryi(<kn, v0>)
  3. 将<k1, v0>插到page_id为vn-1的internal page最后方。

向right sibling拆借后,parent_page的entry如下:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<k1, vn> 、<kn+1, vn+1>、…

向right sibling合并

还是以大页向小页追加为原则

假设parent_page中有如下entry:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn, vn> 、<kn+1, vn+1>、…

page_id为vn-1的internal_page和right sibling合并,流程如下:

  1. 找到right sibling的page_id假设中是vn。

  2. 将right_sibling所有的entry(包括index为0,尽管key是无效的)都追加到internal_page中去。

  3. 在internal_page中找到原来right_sibling中index为0的entry(其key是无效key),将kn设为其key。

  4. 删除parent_page中index为n的entry。

和right sibling合并后,parent_page的entry如下:

… 、<kn-2, vn-2>、<kn-1, vn-1>、<kn+1, vn+1>、…

官方提供的删除伪代码如下:

删除伪代码

Gradescope测试

关于3个Fail的解释

这三个是关于代码规范的测试,所以没有通过。

gradescope测试

大总结

p1+p2两个lab,大概花了10天,效率还是比较满意的。后面还剩两个project。目前核心在春招,所以准备放一放了。

CMU15445的lab做的还是爽的,就调试而言,起码比6.824的lab友好很多了。


本章完结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/714475.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux系统Jenkins工具配置webhook自动部署

Jenkins工具webhook自动部署 webhook自动部署webhook的意义操作流程jenkins页面操作gitlab页面操作 webhook自动部署 webhook的意义 自动化部署&#xff1a;Webhook 可以在代码提交、合并请求或其他特定事件发生时自动触发 Jenkins 构建和部署任务&#xff0c;从而实现自动化…

C#,K中心问题(K-centers Problem)的算法与源代码

1 K中心问题&#xff08;K-centers Problem&#xff09; k-centers problem: 寻找k个半径越小越好的center以覆盖所有的点。 比如&#xff1a;给定n个城市和每对城市之间的距离&#xff0c;选择k个城市放置仓库&#xff08;或ATM或云服务器&#xff09;&#xff0c;以使城市…

【前端素材】推荐优质后台管理系统网页Highdmin平台模板(附源码)

一、需求分析 1、系统定义 后台管理系统是一种用于管理和控制网站、应用程序或系统的管理界面。它通常被设计用来让网站或应用程序的管理员或运营人员管理内容、用户、数据以及其他相关功能。后台管理系统是一种用于管理网站、应用程序或系统的工具&#xff0c;通常由管理员使…

express+mysql+vue,从零搭建一个商城管理系统7--文件上传,大文件分片上传

提示&#xff1a;学习express&#xff0c;搭建管理系统 文章目录 前言一、安装multer&#xff0c;fs-extra二、新建config/upload.js三、新建routes/upload.js四、修改routes下的index.js五、修改index.js六、新建上传文件test.html七、开启jwt验证token&#xff0c;通过login接…

Vue.js+SpringBoot开发开放实验室管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实验管理模块2.4 实验设备模块2.5 实验订单模块 三、系统设计3.1 用例设计3.2 数据库设计 四、系统展示五、样例代码5.1 查询实验室设备5.2 实验放号5.3 实验预定 六、免责说明 一、摘…

vue3的router

需求 路由组件一般放在&#xff0c;pages或views文件夹, 一般组件通常放在component文件夹 路由的2中写法 子路由 其实就是在News组件里面&#xff0c;再定义一个router-view组件 他的子组件&#xff0c;机会渲染在router-view区域 路由传参 <RouterLink :to"/news…

解决导入项目后在idea中不显示的问题

问题&#xff1a; 今天下午重新打开寒假之前负责的项目&#xff0c;发现打不开了&#xff0c; 从master拉取最新代码到我的分支&#xff0c;发现我的分支上显示就是这样子&#xff0c;无论怎么更新代码都不行。 原因&#xff1a; 在上一次上传代码的时候&#xff0c;我把我分…

leetcode括号生成

题目描述 解题思路 首先看到题目&#xff0c;一开始是并没有思路的。这时候可以在纸上进行演算一下结果。当只有一对括号的时候&#xff0c;我们可以得知结果[“()”],当有两对括号的时候&#xff0c;我们可以发现&#xff0c;括号在第一个基础上&#xff0c;要么在括号内部出…

静态时序分析:SDC约束命令set_case_analysis详解

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 目录 指定值 指定端口/引脚列表 简单使用 set_case_analysis命令用于对电路进行特定模式的设定&#xff0c;例如对于一个工作在正常模式下的芯片&#xff0c;…

HTML5新特性:为Web带来的翻天覆地变化

随着互联网的发展&#xff0c;HTML5作为Web开发的重要里程碑&#xff0c;为我们带来了一系列令人兴奋的新特性和功能。本文将带领大家探索HTML5的新特性&#xff0c;揭示其对Web技术的巨大影响。 一、介绍 HTML5作为HTML的最新版本&#xff0c;不仅强化了网页结构与内容&#…

reach功能的使用

1.reach添加后 1.reach添加后2 2.拷贝reach最后一帧的动作 3.删除reach(注意画选时如果reach延长不能直接删否则以前的动画也会删掉&#xff0c;要缩短reach后再删另外这两个灰原点也要删掉否则影响后边新加clip的对齐会出现乱七八糟的事情) 4.删除reach后&#xff0c;光标移到…

收藏:数据防泄漏系统推荐,数据防泄漏系统有哪些?

一金融机构在近期发生了一起数据泄露事件。 经过调查&#xff0c;发现是由于一名员工将包含客户敏感信息的文件通过电子邮件发送给了未经授权的第三方。 这一事件导致客户数据泄露&#xff0c;给该机构带来了严重的声誉损失和信任危机。 这一案例凸显了数据防泄漏系统的重要性…

Neo4j aura 官方网站快速入门新手教精读-从官方教程学习知识图谱

Neo4j 官方网站快速入门新手教精读 本文旨在为Neo4j新手提供一份全面的入门指南。除了基础的文本解释&#xff0c;我在里面还插入了每一步骤的详细截图或者自己画的图&#xff0c;从官方了解知识肯定比自己乱看要权威一些&#xff0c;有看不懂的不要纠结了解大概意思即可&#…

Java中心校智慧校园智慧班牌物联网平台源码

目录 智慧班牌 班牌首页 班级信息 课表信息 视频 图片 进离校管理 人脸登录页 学生个人中心 请假管理 成绩管理 家长留言 学生绑卡 学生评价 系统设置 通知管理 值日管理 倒计时 班级德育 班牌模式 1.课堂授课模式 2.家长会签到模式 3.考场模式 4.班级…

React富文本编辑器开发(一)

这是一个系统的完整的教程&#xff0c;每一节文章的内容都很重要。这个教程学完后自己可以开发出一个相当完美的富文本编辑器了。下面就开始我们今天的内容&#xff1a; 安装 是的&#xff0c;我们的开发是基于Slate的开发基础&#xff0c;所以要安装它&#xff1a; yarn ad…

【贪心算法】Leetcode 122. 买卖股票的最佳时机 II

【贪心算法】Leetcode 122. 买卖股票的最佳时机 II 122. 买卖股票的最佳时机 II贪心算法&#xff1a;整体利润拆为每天的利润&#xff0c;只收集每天的正利润 122. 买卖股票的最佳时机 II ---------------&#x1f388;&#x1f388;122. 买卖股票的最佳时机 II 题目链接&…

【Excel PDF 系列】EasyExcel + iText 库实现 Excel 转换 PDF

你知道的越多&#xff0c;你不知道的越多 点赞再看&#xff0c;养成习惯 如果您有疑问或者见解&#xff0c;欢迎指教&#xff1a; 企鹅&#xff1a;869192208 文章目录 前言转换前后效果引入 pom 配置代码实现定义 ExcelDataVo 对象主方法EasyExcel 监听器 前言 最近遇到生成 …

图论 - 最小生成树(Prime、Kruskal)

文章目录 前言Part 1&#xff1a;Prim算法求最小生成树1.题目描述输入格式输出格式数据范围输入样例输出样例 2.算法 Part 2&#xff1a;Kruskal算法求最小生成树1.题目描述输入格式输出格式数据范围输入样例输出样例 2.算法 前言 本篇博客介绍两种求最小生成树的方法&#xff…

辽宁博学优晨教育视频:引领安全可靠的学习新风尚

在数字化时代&#xff0c;随着信息技术的飞速发展&#xff0c;线上教育已成为越来越多人提升自我、拓宽视野的重要选择。辽宁博学优晨教育视频凭借其安全可靠的特质&#xff0c;在众多在线教育平台中脱颖而出&#xff0c;成为广大学子信赖的学习伙伴。 一、辽宁博学优晨教育视频…

MagiskHideProps 使用 props 开启 android 手机的 ro.debuggable =1 的方法

因为 CDSN 一直不给对旧的文章&#xff08;特别是边幅比较长的文章&#xff09;一直都无法修改&#xff0c;保存&#xff0c;重新发布 一直都是操作超时 我这里是补全 这边文章中 unity shader - 圣斗士星矢 人物 shader 还原 - GPA 抓帧提取资源、shader&#xff0c;ROOT权…