利用微调的deberta-v3-large来预测情感分类

前言:

昨天我们讲述了怎么利用emotion数据集进行deberta-v3-large大模型的微调,那今天我们就来输入一些数据来测试一下,看看模型的准确率,为了方便起见,我直接用测试集的前十条数据

代码:

from transformers import AutoModelForSequenceClassification,AutoTokenizer
import torch
import numpytokenizer = AutoTokenizer.from_pretrained("deberta-v3-large")
model = AutoModelForSequenceClassification.from_pretrained("result/checkpoint-500",num_labels=6)raw_inputs = ["im feeling rather rotten so im not very ambitious right now","im updating my blog because i feel shitty","i never make her separate from me because i don t ever want her to feel like i m ashamed with her","i left with my bouquet of red and yellow tulips under my arm feeling slightly more optimistic than when i arrived","i was feeling a little vain when i did this one","i cant walk into a shop anywhere where i do not feel uncomfortable","i felt anger when at the end of a telephone call","i explain why i clung to a relationship with a boy who was in many ways immature and uncommitted despite the excitement i should have been feeling for g
etting accepted into the masters program at the university of virginia","i like to have the same breathless feeling as a reader eager to see what will happen next","i jest i feel grumpy tired and pre menstrual which i probably am but then again its only been a week and im about as fit as a walrus on vacation for thesummer"
]
inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="pt")
outputs = model(**inputs)
print(outputs.logits.argmax(-1).numpy())output_tensor = torch.softmax(outputs.logits, dim=1)numpy.set_printoptions(suppress=True, precision=15)
print(output_tensor.detach().numpy())

标注结果:

[0 0 0 1 0 4 3 1 1 3]

测试结果:

[0 0 0 1 0 4 4 2 1 3]
[[0.99185866    0.0011510316  0.00038844926 0.0026896652  0.00296234010.00094986777][0.9918577     0.0011512033  0.00038886679 0.0026923663  0.00295853150.000951257  ][0.99185807    0.0011446937  0.00038163515 0.0026456509  0.00303544850.00093440723][0.00041773843 0.9972398     0.0014854104  0.0002909223  0.000362315240.00020376328][0.99185014    0.0011451623  0.00038086114 0.0026396883  0.00305240350.00093187904][0.015044774   0.0025362356  0.00041989447 0.015223678   0.950097140.016678285  ][0.11319714    0.030935207   0.007336047   0.3035547     0.475454330.069522515  ][0.0011094044  0.18334262    0.8081213     0.0011003793  0.00072979650.005596481  ][0.0004444314  0.9972433     0.0014491597  0.00028465112 0.000374119760.00020446534][0.00241266    0.00079152075 0.00092184055 0.9924028     0.00241092480.0010602956 ]]

结果对比:

除了第七、第八条数据错误外,其他的八条数据都是正确的

代码解释:

1、raw_inputs:用户输入的数据,这个地方你可以使用一个while循环,然后使用input来与用户进行交互,需要注意的是这个必须是一个数组,哪怕用户只输入了一句文本。

2、return_tensors="pt":表示tokenizer返回的是PyTorch格式的数据

3、argmax(-1):将logits属性中的浮点数张量沿着最后一个轴(即-1轴)进行argmax操作,从而找到该张量中最大值所对应的标签编号。

4、softmax(outputs.logits, dim=1):dim指沿着哪个维度计算softmax,通常指定为1,表示对每一行进行softmax操作。如果不指定,则默认在最后一维计算softmax。

5、numpy.set_printoptions(suppress=True, precision=15):使用 numpy.set_printoptions() 函数来设置打印选项,从而调整打印输出格式。其中,suppress 选项可以关闭科学计数法,precision 选项可以设置打印精度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/71364.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JS原理-笔记(1/3)

JS原理-笔记(1/3) 知识点自测 今天课程中涉及到的已学习知识点 函数的call方法-文档链接 // 以指定的this调用函数,并通过 从第二个参数开始依次传递参数 function func(food,drink){console.log(this)console.log(food)console.log(drink)…

【C语言】数据结构的基本概念与评价算法的指标

1. 数据结构的基本概念 1.1 基本概念和术语 1.1.1 数据 数据是信息的载体,是描述客观事物属性的数、字符及所有能输入到计算机中并被计算机程序识别和处理的符号的集合。数据是计算机程序加工的原料 1.1.2 数据元素 数据元素是数据的基本单位,通常作为一个整体进行考虑和…

vue知识点————插槽 slot

slot 插槽 在父组件中引用的子组件 在父组件中写入百度 可在子组件slot插槽中展示出 父组件 <template><div id"app"><child url"https://www.baidu.com">百度</child></div> </template><script> import chil…

如何评估以及优化谷歌ads

在广告投放一段时间后&#xff0c;应该对广告的效果有所了解。如果您的目标是增加销量和网站流量&#xff0c;米贸搜谷歌推广建议请考虑以下问题&#xff1a; 1.哪些关键字为广告带来的点击最多&#xff1f; 2.客户进行搜索时使用的是何种设备&#xff1f;他们来自何处&#xf…

C语言是否快被时代所淘汰?

今日话题&#xff0c;C语言是否快被时代所淘汰&#xff1f;在移动互联网的冲击下&#xff0c;windows做的人越来越少&#xff0c;WP阵营没人做&#xff0c;后台简单的php&#xff0c;复杂的大数据处理的java&#xff0c;要求性能的c。主流一二线公司基本上没多少用C#的了。其实…

ChatGLM学习

GLM paper&#xff1a;https://arxiv.org/pdf/2103.10360.pdfchatglm 130B&#xff1a;https://arxiv.org/pdf/2210.02414.pdf 前置知识补充 双流自注意力 Two-stream self-attention mechanism&#xff08;双流自注意机制&#xff09;是一种用于自然语言处理任务的注意力机制…

Feign负载均衡写法

Feign主要为了面向接口编程 feign是web service客户端&#xff0c;是接口实现的&#xff0c;而ribbon是通过微服务名字访问通过RestTemplate调用的&#xff0c;如下&#xff1a; 在Feign的实现下&#xff0c;我们只需要创建一个接口并使用注解的方式来配置它&#xff08;类似…

AcWing 4405. 统计子矩阵(每日一题)

如果你觉得这篇题解对你有用&#xff0c;可以点点关注再走呗~ 题目描述 给定一个 NM 的矩阵 A&#xff0c;请你统计有多少个子矩阵 (最小 11&#xff0c;最大 NM) 满足子矩阵中所有数的和不超过给定的整数 K ? 输入格式 第一行包含三个整数 N,M 和 K。 之后 N 行每行包含 …

代码随想录算法训练营day58 | LeetCode 739. 每日温度 496. 下一个更大元素 I

739. 每日温度&#xff08;题目链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台&#xff09; 思路&#xff1a;新学习的单调栈做法&#xff0c;实质就是用一个栈存储中间结果。在针对数组某个元素的结果没找出来之前&#xff0c;将数…

OTFS-ISAC雷达部分最新进展(含matlab仿真+USRP验证)

OTFS基带参数设置 我将使用带宽为80MHz的OTFS波形进行设计&#xff0c;对应参数如下&#xff1a; matlab Tx仿真 Tx导频Tx功率密度谱 帧结构我使用的是经典嵌入导频帧结构&#xff0c;Tx信号波形的带宽从右图可以看出约为80Mhz USRP验证 测试环境 无人机位于1m处 Rx导频Rx…

kubernetes 之 minikube折腾记

参考官网教程&#xff0c;链接&#xff1a; https://minikube.sigs.k8s.io/docs/start/ curl -LO https://storage.googleapis.com/minikube/releases/latest/minikube-linux-amd64 sudo install minikube-linux-amd64 /usr/local/bin/minikube安装完启动minikube&#xff1a;…

算法通关村第十八关——排列问题

LeetCode46.给定一个没有重复数字的序列&#xff0c;返回其所有可能的全排列。例如&#xff1a; 输入&#xff1a;[1,2,3] 输出&#xff1a;[[1,2,3]&#xff0c;[1,3,2]&#xff0c;[2,1,3]&#xff0c;[2,3,1]&#xff0c;[3,1,2]&#xff0c;[3,2,1]] 元素1在[1,2]中已经使…

监控系统典型架构

监控系统典型架构如下&#xff1a; 从左往右看&#xff1a; 采集器是负责采集监控数据的&#xff0c;采集到数据之后传输给服务端&#xff0c;通常是直接写入时序库。 对时序库的数据进行分析和可视化。 告警引擎产生告警事件之后交给告警发送模块做不同媒介的通知。 可视化比…

【CUDA OUT OF MEMORY】【Pytorch】计算图与CUDA OOM

计算图与CUDA OOM 在实践过程中多次碰到了CUDA OOM的问题&#xff0c;有时候这个问题是很好解决的&#xff0c;有时候DEBUG一整天还是头皮发麻。 最近实践对由于计算图积累导致CUDA OOM有一点新的看法&#xff0c;写下来记录一下。包括对计算图的一些看法和一个由于计算图引发…

Unity 时间定时调度系统

C# Unity 时间定时调度系统 之前的文章也有写过时间调度系统&#xff0c;但是没有支持异步调度只有回调调度&#xff0c;而且效率和代码可读性不是很好&#xff0c;下面介绍一种更优质的时间调度系统 1.TimerAction 首先需要定义一个时间行为&#xff0c;每次延时后需要干什…

机器学习处理问题的基本路线

基本路线&#xff1a; 1.搭建环境/数据读入 2.数据分析 3.特征工程 4.建模调参 5.模型融合 异常处理&#xff1a; 通过箱线图&#xff08;或 3-Sigma&#xff09;分析删除异常值&#xff1b;BOX-COX 转换&#xff08;处理有偏分布&#xff09;&#xff1b;长尾截断&…

Redis基本了解

Redis 基于内存进⾏存储&#xff0c;⽀持 key-value 的存储形式&#xff0c;底层是⽤ C 语⾔编写的。 基于 key-value 形式的数据字典&#xff0c;结构⾮常简单&#xff0c;没有数据表的概念&#xff0c;直接⽤键值对的形式完成数据的管理&#xff0c;Redis ⽀持 5 种数据类型…

[machine Learning]推荐系统

其实严格来说推荐系统也是一种监督学习,我们需要根据已有数据进行预测,但是这种训练数据不是单纯的输入和输出问题,所以被归类为"超越监督学习"的一种? 今天去旁听了隔壁专业的机器学习课程,感觉自己的知识确实不是很系统,所以后面会找个机会把前面的代码给补充上.…

Qt打开及创建项目,运行程序(1)

安装之后&#xff0c; 1.文件->新建文件或项目 2.Application->Qt Widgets Application 3.自己设置名称和路径 4.这一步非常非常重要&#xff0c;要选择编译器&#xff0c;&#xff08;MinGW是可以在Qt里用&#xff0c;如果想与VS交互&#xff0c;要选择MSVC&#xff09…

iOS开发Swift-类型转换

1.Int或Double转字符串 let x 20 let y "\(x)" let z String(x)2.Double转Int(去掉小数点后面的) Int(1.9)3.Int转Double Double(1)4.向上转型 class A{//A父类 }class B: A{//B子类继承A }let a A() let b B()b as A //子类转化成父类5.向下转型 class A{//A…