神经网络系列---卷积


文章目录

    • 卷积神经网络
      • 卷积
      • 转置卷积
    • 卷积核和反卷积的三种实现方式
    • 卷积的次数计算


卷积神经网络

在神经网络的卷积层中,向下取整(Floor)是一种常用的策略,特别是在处理输出尺寸不是整数的情况时。当你计算出卷积层输出的尺寸(通常是宽度和高度)不是整数时,你可以简单地去掉小数部分,即对该数进行向下取整。

向下取整通常意味着在卷积操作中你可能会忽略输入矩阵(也就是图像或者上一层的输出)的一小部分。这可能导致一些空间信息的丢失,但在实践中通常不会产生重大影响。

举一个简单的例子,假设你有一个7x7的输入和一个3x3的卷积核,步长为2。通常,输出的尺寸会用以下公式来计算:

输出尺寸 = ⌊ 输入尺寸 − 核尺寸 步长 ⌋ + 1 \text{输出尺寸} = \left\lfloor \frac{{\text{输入尺寸} - \text{核尺寸}}}{\text{步长}} \right\rfloor + 1 输出尺寸=步长输入尺寸核尺寸+1

如果用这个公式计算,输出尺寸会是:

⌊ 7 − 3 2 ⌋ + 1 = 3 \left\lfloor \frac{{7 - 3}}{2} \right\rfloor + 1 = 3 273+1=3

这里,向下取整实际上没有影响,因为计算结果刚好是一个整数。但如果输入尺寸是8x8,那么输出尺寸会是:

⌊ 8 − 3 2 ⌋ + 1 = ⌊ 5 2 ⌋ + 1 = 2 + 1 = 3 \left\lfloor \frac{{8 - 3}}{2} \right\rfloor + 1 = \left\lfloor \frac{5}{2} \right\rfloor + 1 = 2 + 1 = 3 283+1=25+1=2+1=3

在这个例子中,尽管精确的计算结果是3.5,但通过向下取整,输出尺寸变成了3。

使用向下取整的一个优点是它简化了实现,因为你不需要特别处理边界条件。缺点是可能会丢失一些空间信息,尤其是当步长比较大的时候。然而,在许多应用场景中,这种信息丢失通常是可以接受的。

神经网络中关于卷积池化的计算(不为整数时,卷积向下取整,池化向上取整)

在这里插入图片描述

在这里插入图片描述

对于正向传播,我们使用原始的卷积核进行卷积操作。在反向传播时,为了计算输入或权重的梯度,通常需要进行“翻转”操作。

需要注意的是,正向卷积和反向传播中的卷积(通常称为转置卷积或反卷积)在数学和实现上有一些不同。在正向传播中,卷积核与输入数据进行卷积以生成输出。而在反向传播中,我们关心的是如何改变输入或卷积核以最小化某个损失函数。

为了具体说明为什么需要翻转卷积核,考虑一维情况(二维情况是类似的):

假设正向卷积表示为 y = x ∗ w y = x * w y=xw,其中 x x x 是输入, w w w 是卷积核, y y y 是输出,‘*’ 是卷积操作。

在反向传播过程中,我们通常需要计算损失函数 L L L 关于输入 x x x 的梯度( ∂ L ∂ x \frac{\partial L}{\partial x} xL)。为了找到这个梯度,我们需要用到链式法则:

∂ L ∂ x = ∂ L ∂ y ∗ rot180 ( w ) \frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} * \text{rot180}(w) xL=yLrot180(w)

其中, rot180 ( w ) \text{rot180}(w) rot180(w) 表示将 w w w 进行180度翻转。

这样做的主要原因是数学上的一致性和计算的方便性。这样,前向和反向传播可以用相似的卷积操作来实现,大大简化了算法的实现。

简而言之,在正向传播中我们使用原始的卷积核,而在反向传播时,为了计算梯度,我们通常需要用到翻转的卷积核。这主要是为了数学和计算的方便。

在反向传播(backpropagation)过程中,通常会使用原始卷积核(kernel)的翻转版本。这里的“翻转”通常意味着沿两个空间维度(即不是批量维度或通道维度)旋转180度。

例如,如果你有一个3x3的卷积核:

K = ( a b c d e f g h i ) K = \begin{pmatrix}a & b & c \\d & e & f \\g & h & i\end{pmatrix} K= adgbehcfi

翻转这个卷积核会得到:

K rot = ( i h g f e d c b a ) K^{\text{rot}} = \begin{pmatrix}i & h & g\\f & e & d \\c & b & a\end{pmatrix} Krot= ifchebgda

在Eigen中,使用reverse()函数并指定需要翻转的维度可以实现这一点。例如,对于一个Eigen::MatrixXf对象kernel,你可以这样翻转它:

Eigen::MatrixXf rotated_kernel = kernel.reverse();

这里简单假设reverse()默认沿两个维度翻转矩阵。实际使用中,请确保你正确地翻转了维度。

这个翻转的卷积核(或旋转180度的卷积核)通常用于反向传播过程中,以计算相对于输入的梯度。这与前向传播中使用的卷积核是同一个卷积核,只是翻转了。

【卷积神经网络中的反向传播动画演示】
在这里插入图片描述

通过将输入和卷积核展开(unroll)为矩阵,可以使用矩阵乘法来实现卷积和转置卷积操作。下面简要介绍如何使用这种技术。

卷积

假设我们有一个输入矩阵 X X X 和一个卷积核 K K K。我们首先将 X X X 展开为一个大矩阵 X unroll X_{\text{unroll}} Xunroll,其中每一列都包含一个 K K K 能应用于 X X X 的局部区域。然后,我们将 K K K 展开为一个行向量 K unroll K_{\text{unroll}} Kunroll

接下来,卷积操作可以通过以下矩阵乘法进行:

O = K unroll × X unroll O = K_{\text{unroll}} \times X_{\text{unroll}} O=Kunroll×Xunroll

其中 O O O 是输出矩阵。

转置卷积

对于转置卷积,方法基本相同,但展开和乘法的方向会有所不同。

假设我们有一个输入矩阵 Y Y Y 和相同的卷积核 K K K。为了进行转置卷积,我们将 Y Y Y 展开为 Y unroll Y_{\text{unroll}} Yunroll,然后执行以下矩阵乘法:

O = X unroll × K T O = X_{\text{unroll}} \times K^T O=Xunroll×KT

这里, K T K^T KT K K K 的转置。

请注意,在这两种情况下,我们都需要格外注意矩阵的维度和展开的顺序。

卷积核和反卷积的三种实现方式

#include <Eigen/Dense>
#include <iostream>//卷积
Eigen::MatrixXf conv2D(const Eigen::MatrixXf& input, const Eigen::MatrixXf& kernel, int stride) {// 计算输出矩阵的尺寸int rows = (input.rows() - kernel.rows()) / stride + 1;int cols = (input.cols() - kernel.cols()) / stride + 1;// 创建输出矩阵Eigen::MatrixXf output(rows, cols);for (int i = 0; i < rows; ++i) {for (int j = 0; j < cols; ++j) {// 计算每个输出元素Eigen::MatrixXf block = input.block(i * stride, j * stride, kernel.rows(), kernel.cols());output(i, j) = (block.array() * kernel.array()).sum();}}return output;
}// deconv2D 是一个函数,用于执行反卷积(也叫转置卷积)
Eigen::MatrixXf deconv2D( const Eigen::MatrixXf& y_grad,const Eigen::MatrixXf& kernel, int stride) {// 计算输出尺寸int outputRows = (y_grad.rows() - 1) * stride + kernel.rows();int outputCols = (y_grad.cols() - 1) * stride + kernel.cols();// 初始化输出矩阵为零Eigen::MatrixXf output = Eigen::MatrixXf::Zero(outputRows, outputCols);// 进行转置卷积操作for (int i = 0; i < y_grad.rows(); ++i) {for (int j = 0; j < y_grad.cols(); ++j) {// 注意:这里我们假设步长(stride)是1,你可以通过修改下面的索引来调整步长output.block(i * stride, j * stride, kernel.rows(), kernel.cols()) += y_grad(i, j) * kernel;}}return output;
}// 转置卷积
Eigen::MatrixXf Conv2DTransposed( int rows,int cols ,const Eigen::MatrixXf& kernel, int stride)
{int r = (rows - kernel.rows()) / stride + 1;int c = (cols - kernel.cols()) / stride + 1;// 初始化输出矩阵为零Eigen::MatrixXf output1 = Eigen::MatrixXf::Zero(r * c, rows * cols);int jj =0;// 进行转置卷积操作for (int i = 0; i < r; ++i){for (int j = 0; j < c ; ++j){// 初始化输出矩阵为零Eigen::MatrixXf output = Eigen::MatrixXf::Zero(rows, cols);// 注意:这里我们假设步长(stride)是1,你可以通过修改下面的索引来调整步长output.block(i * stride, j * stride, kernel.rows(), kernel.cols()) = kernel;output1.row(jj++) = output.reshaped<Eigen::RowMajor>();}}return output1;
}
//图像转换为列
Eigen::MatrixXf im2col(const Eigen::MatrixXf& input, int kernel_rows, int kernel_cols, int stride) {int output_rows = (input.rows() - kernel_rows) / stride + 1;int output_cols = (input.cols() - kernel_cols) / stride + 1;Eigen::MatrixXf output(kernel_rows * kernel_cols, output_rows * output_cols);int col_idx = 0;for (int row = 0; row <= input.rows() - kernel_rows; row += stride){for (int col = 0; col <= input.cols() - kernel_cols; col += stride){Eigen::VectorXf col_vector = input.block(row, col, kernel_rows, kernel_cols).reshaped<Eigen::RowMajor>();//const Eigen::VectorXf col_vector = Eigen::Map<const Eigen::VectorXf, Eigen::RowMajor>(block.data(), block.size());output.col(col_idx++) = col_vector;}}return output;
}//列转换为图像
Eigen::MatrixXf col2im(const Eigen::MatrixXf& input, int original_rows, int original_cols, int kernel_rows, int kernel_cols, int stride) {Eigen::MatrixXf output = Eigen::MatrixXf::Zero(original_rows, original_cols);int col_idx = 0;for (int row = 0; row <= original_rows - kernel_rows; row += stride){for (int col = 0; col <= original_cols - kernel_cols; col += stride){Eigen::MatrixXf block = input.col(col_idx++).reshaped<Eigen::RowMajor>(kernel_rows, kernel_cols);//const Eigen::MatrixXf block = Eigen::Map<const Eigen::MatrixXf, Eigen::RowMajor>(col_vector.data(), kernel_rows, kernel_cols);output.block(row, col, kernel_rows, kernel_cols) += block;}}return output;
}int main() {// 用于测试的输入和卷积核Eigen::MatrixXf input(5, 5);input << 1, 2, 3, 4, 5,5, 4, 3, 2, 1,1, 2, 3, 4, 5,5, 4, 3, 2, 1,1, 2, 3, 4, 5;Eigen::MatrixXf kernel(3, 3);kernel << 1, 0, -1,1, 5, -1,1, 4, -1;int stride = 2;//第一种实现:正常卷积{//卷积Eigen::MatrixXf output = conv2D(input, kernel, stride);std::cout << "1: Conv2D Output:\n" << output << std::endl;//反卷积Eigen::MatrixXf output1 = deconv2D(output,kernel, stride);std::cout << "1: deconv2D output1:\n" << output1 << std::endl;}//第二种实现:转置卷积{Eigen::MatrixXf Unfold = Conv2DTransposed(input.rows(),input.cols(),kernel,stride);std::cout << "2: Unfold:\n" << Unfold << std::endl;Eigen::VectorXf Input = input.reshaped<Eigen::RowMajor>();Eigen::MatrixXf output = Unfold * Input;std::cout << "2: Conv2D Output:\n" << output << std::endl;Eigen::MatrixXf output1 =  (Unfold.transpose() * output).reshaped<Eigen::RowMajor>(input.rows(),input.cols());std::cout << "2: deconv2D output1:\n" << output1 << std::endl;}//第三种种实现:图像转换为列  矩阵相乘实现  加速运算{Eigen::MatrixXf input_unroll = im2col(input, kernel.rows(),kernel.cols(), stride);Eigen::RowVectorXf kernel_unroll = kernel.reshaped<Eigen::RowMajor>();Eigen::MatrixXf output = kernel_unroll * input_unroll ;std::cout << "3: Conv2D Output:\n" << output << std::endl;Eigen::MatrixXf output_unroll11 = kernel_unroll.transpose() * output;std::cout << "3: output_unroll11:\n" << output_unroll11 << std::endl;Eigen::MatrixXf output1 = col2im(output_unroll11, input.rows(),input.cols(),kernel.rows(),kernel.cols(), stride);std::cout << "3: deconv2D output1:\n" << output1 << std::endl;}}
1: Conv2D Output:
26 24
26 24
1: deconv2D output1:26   0  -2   0 -2426 130  -2 120 -2452 104  -4  96 -4826 130  -2 120 -2426 104  -2  96 -24
2: Unfold:1  0 -1  0  0  1  5 -1  0  0  1  4 -1  0  0  0  0  0  0  0  0  0  0  0  00  0  1  0 -1  0  0  1  5 -1  0  0  1  4 -1  0  0  0  0  0  0  0  0  0  00  0  0  0  0  0  0  0  0  0  1  0 -1  0  0  1  5 -1  0  0  1  4 -1  0  00  0  0  0  0  0  0  0  0  0  0  0  1  0 -1  0  0  1  5 -1  0  0  1  4 -1
2: Conv2D Output:
26
24
26
24
2: deconv2D output1:26   0  -2   0 -2426 130  -2 120 -2452 104  -4  96 -4826 130  -2 120 -2426 104  -2  96 -24
3: Conv2D Output:
26 24 26 24
3: output_unroll11:26  24  26  240   0   0   0
-26 -24 -26 -2426  24  26  24
130 120 130 120
-26 -24 -26 -2426  24  26  24
104  96 104  96
-26 -24 -26 -24
3: deconv2D output1:26   0  -2   0 -2426 130  -2 120 -2452 104  -4  96 -4826 130  -2 120 -2426 104  -2  96 -24

卷积的次数计算

在这里插入图片描述

当然可以。给定一个输入特征图的大小和一个滤波器的大小,以及卷积的步长和填充,以下是如何计算卷积后的输出特征图的维度的完整公式:

  1. 高度 H 2 H_2 H2 的计算:
    H 2 = H 1 − F H + 2 P S + 1 H_2 = \frac{H_1 - F_{H} + 2P}{S} + 1 H2=SH1FH+2P+1

  2. 宽度 W 2 W_2 W2 的计算:
    W 2 = W 1 − F W + 2 P S + 1 W_2 = \frac{W_1 - F_{W} + 2P}{S} + 1 W2=SW1FW+2P+1

其中:

  • H 1 , W 1 H_1, W_1 H1,W1 是输入特征图的高和宽。
  • F H , F W F_H, F_W FH,FW 是滤波器的高和宽。
  • P P P 是填充的数量。
  • S S S 是步长。

以下是使用C++和Eigen库实现的示例:

#include <Eigen/Dense>
#include <iostream>
#include <cmath>std::pair<int, int> computeConvTimes(int input_rows, int input_cols, int kernel_rows, int kernel_cols, int stride) {int rows_times = (input_rows - kernel_rows) / stride + 1;int cols_times = (input_cols - kernel_cols) / stride + 1;return {rows_times, cols_times};
}int main() {int input_rows = 5, input_cols = 5;int kernel_rows = 3, kernel_cols = 3;int stride = 2;auto [rows_times, cols_times] = computeConvTimes(input_rows, input_cols, kernel_rows, kernel_cols, stride);std::cout << "Rows can be convolved: " << rows_times << " times.\n";std::cout << "Columns can be convolved: " << cols_times << " times.\n";return 0;
}

这段代码首先定义了一个函数computeConvTimes,该函数使用上述公式计算行和列的卷积次数。然后在main函数中展示了对于给定的输入大小、核大小和步长,可以进行多少次卷积操作。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/712898.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE5 C++ 发射子弹发射(Projectile)

一.相关蓝图的练习&#xff0c;在我之前的文章中射击子弹案例-CSDN博客 本篇使用C实现 1.创建C类 MyBullet,在MyBullet.h中包含相关头文件 #include "CoreMinimal.h" #include "GameFramework/Actor.h" #include "Components/StaticMeshComponent.…

idea集成git详解教程(实用篇)

0.Git常用命令 Git常用命令-CSDN博客 1.下载git Git - Downloads 一路傻瓜式安装即可&#xff08;NEXT&#xff09; 2.软件测试 在Windows桌面空白处&#xff0c;点击鼠标右键&#xff0c;弹出右键菜单 Git软件安装后&#xff0c;会在右键菜单中增加两个菜单 Git GUI He…

matplotlib绘图中文乱码问题

如图所示&#xff0c;在使用python包matplotlib绘图时中文文字显示乱码&#xff0c;在绘图前加入以下两行代码即可 # 导入包 import matplotlib.pyplot as plt # 解决中文乱码问题 plt.rcParams[font.sans-serif][SimHei] plt.rcParams[axes.unicode_minus] False重新运行代…

【Django】执行查询—跨关系查询中的跨多值关联问题

跨多值查询 跨越 ManyToManyField 或反查 ForeignKey &#xff08;例如从 Blog 到 Entry &#xff09;时&#xff0c;对多个属性进行过滤会产生这样的问题&#xff1a;是否要求每个属性都在同一个相关对象中重合。 filter() 先看filter()&#xff0c;通过一个例子看&#xf…

缓存穿透解决方案之布隆过滤器

布隆过滤器可以快速判断数据是否存在&#xff0c;避免从数据库中查询数据是否存在&#xff0c;减轻数据库的压力 布隆过滤器是由一个初值为0的bit数组和N个哈希函数&#xff0c;可以用来快速的判断某个数据是否存在 当我们想要标记某个数据是否存在时&#xff0c;布隆过滤器会…

LabVIEW眼结膜微血管采集管理系统

LabVIEW眼结膜微血管采集管理系统 开发一套基于LabVIEW的全自动眼结膜微血管采集管理系统&#xff0c;以提高眼结膜微血管临床研究的效率。系统集成了自动化图像采集、图像质量优化和规范化数据管理等功能&#xff0c;有效缩短了图像采集时间&#xff0c;提高了图像质量&#…

idea 多模块A模块调用了B模块的Jar包,而非本地源码

1&#xff0c;问题描述 对于多模块的互相调用&#xff0c;比如模块A&#xff0c;模块B&#xff0c;模块C&#xff0c; 这在本地都是可以编辑进行开发的源码&#xff0c; 按理说是模块A可以直接点进模块B的本地源码&#xff0c; 但是不知道什么原因&#xff0c;导致模块A点进…

C++小记 - 二叉树

文章目录 二叉树一、二叉树理论基础篇二叉树的种类满二叉树完全二叉树二叉搜索树平衡二叉搜索树 二叉树的存储方式链式存储&#xff1a;顺序存储&#xff1a;遍历规则&#xff1a;构造实现&#xff1a; 二叉树的遍历方式二叉树的定义 二、二叉树的递归遍历递归算法的三个要素:递…

vue+element UI中给指定日期添加标记

1.日期控件中添加:picker-options属性&#xff0c;即:picker-options“myPickerOptions” <el-date-picker:class"item.scds !null ?xtsjBlue:xtsjRed"v-model"item.date"value-format"yyyy-MM-dd"type"date":picker-options"…

如何进行弱网测试?

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 如今这个高度互联的时代里&#xff0c;网络环境对于应用程序的影响越来越重要。 而弱网测试就是…

leetcode--接雨水(双指针法,动态规划,单调栈)

目录 方法一&#xff1a;双指针法 方法二&#xff1a;动态规划 方法三&#xff1a;单调栈 42. 接雨水 - 力扣&#xff08;LeetCode&#xff09; 黑色的是柱子&#xff0c;蓝色的是雨水&#xff0c;我们先来观察一下雨水的分布情况: 雨水落在凹槽之间&#xff0c;在一个凹槽的…

使用js写一个登录验证码效果

面试题 登录页面获取验证码的功能&#xff0c;用户点击获取验证码按钮(id”btn1”)&#xff0c;按文字变为“(N)后获取验证码”&#xff0c;N为倒计对秒数&#xff0c;从 60 开始&#xff0c;每秒减一&#xff0c;减到 0的时候&#xff0c;按钮文字变为“获取验证码”&#xff…

Beans模块之工厂模块Aware

博主介绍:✌全网粉丝5W+,全栈开发工程师,从事多年软件开发,在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战,博主也曾写过优秀论文,查重率极低,在这方面有丰富的经验✌ 博主作品:《Java项目案例》主要基于SpringBoot+MyBatis/MyBatis-plus+…

【JavaWeb】

Javaweb 数据库相关概念MySQL数据库MySQL数据模型SQLDDL--操作数据库图形化客户端工具DML--操作数据DQL数据库约束 数据库设计多表查询事务 数据库相关概念 数据库 存储数据的仓库&#xff0c;数据是有组织的进行存储 英文&#xff1a;DataBase&#xff0c;简称DB 数据库管理系…

Android T 远程动画显示流程其三——桌面侧动画启动到系统侧结束流程

前言 接着前文分析Android T 远程动画显示流程其二 我们通过IRemoteAnimationRunner跨进程通信从系统进程来到了桌面进程&#xff0c;这里是真正动画播放的逻辑。 之后又通过IRemoteAnimationFinishedCallback跨进程通信回到系统进程&#xff0c;处理动画结束时的逻辑。 进入…

使用maven项目引入jQuery

最近在自学 springBoot &#xff0c;期间准备搞一个前后端不分离的东西&#xff0c;于是需要在 maven 中引入jQuery 依赖&#xff0c;网上百度了很多&#xff0c;这里来做一个总结。 1、pom.xml 导入依赖 打开我们项目的 pom.xml 文件&#xff0c;输入以下坐标。这里我使用的是…

FPGA-学会使用vivado中的存储器资源ROM(IP核)

问题&#xff1a; 某芯片,有500个寄存器,需要在上电的时候由FPGA向这些寄存器中写入初始值,初始值已经通过相应的文档给出了具体值,这些值都是已知的。 分析关键点&#xff1a; 数据量比较多&#xff08;Verilog代码&#xff0c;通过case语句、always语句这种查找表的方式,数…

Linux——匿名管道

Linux——匿名管道 什么是管道匿名管道的底层原理观察匿名管道现象读写端的几种情况写端慢&#xff0c;读端快写端快&#xff0c;读端慢 管道的大小写端关闭&#xff0c;读端一直读写端一直写&#xff0c;读端关闭 我们之前一直用的是vim来编写代码&#xff0c;现在有了vscode这…

bert 相似度任务训练,简单版本

目录 任务 代码 train.py predit.py 数据 任务 使用 bert-base-chinese 训练相似度任务&#xff0c;参考&#xff1a;微调BERT模型实现相似性判断 - 知乎 参考他上面代码&#xff0c;他使用的是 BertForNextSentencePrediction 模型&#xff0c;BertForNextSentencePred…

thinkphp学习10-数据库的修改删除

数据修改 使用 update()方法来修改数据&#xff0c;修改成功返回影响行数&#xff0c;没有修改返回 0 public function index(){$data [username > 孙悟空1,];return Db::name(user)->where(id,11)->update($data);}如果修改数据包含了主键信息&#xff0c;比如 i…