探索数据结构:解锁计算世界的密码


✨✨ 欢迎大家来到贝蒂大讲堂✨✨

🎈🎈养成好习惯,先赞后看哦~🎈🎈

所属专栏:数据结构与算法
贝蒂的主页:Betty‘s blog

前言

随着应用程序变得越来越复杂和数据越来越丰富,几百万、几十亿甚至几百亿的数据就会出现,而对这么大对数据进行搜索、插入或者排序等的操作就越来越慢,人们为了解决这些问题,提高对数据的管理效率,提出了一门学科即:数据结构与算法

1. 什么是数据结构

**数据结构(Data Structure)**是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。

下标是常见的数据结构:

名称定义
数组(Array)数组是一种聚合数据类型,它是将具有相同类型的若干变量有序地组织在一起的集合。
链表(Linked List)链表是一种数据元素按照链式存储结构进行存储的数据结构,这种存储结构具有在物理上存在非连续的特点。
栈(Stack)栈是一种特殊的线性表,它只能在一个表的一个固定端进行数据结点的插入和删除操作
队列(Queue)队列和栈类似,也是一种特殊的线性表。和栈不同的是,队列只允许在表的一端进行插入操作,而在另一端进行删除操作。
树(Tree)树是典型的非线性结构,它是包括,2 个结点的有穷集合 K
堆(Heap)堆是一种特殊的树形数据结构,一般讨论的堆都是二叉堆。
图(Graph)图是另一种非线性数据结构。在图结构中,数据结点一般称为顶点,而边是顶点的有序偶对

2. 什么是算法

**算法(Algorithm)😗*就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

算法一般分为:排序,递归与分治,回溯,DP,贪心,搜索算法

  • 算法往往数学密切相关,就如数学题一样,每道数学题都有不同的解法,算法也是同理。

3. 复杂度分析

3.1 算法评估

我们在进行算法分析时,常常需要完成两个目标**。一个是找出问题的解决方法,另一个就是找到问题的最优解**。而为了找出最优解,我们就需要从两个维度分析:

  • 时间效率:算法运行的快慢
  • 空间效率:算法所占空间的大小

3.2 评估方法

评估时间的方法主要分为两种,一种是实验分析法,一种是理论分析法

(1) 实验分析法

实验分析法简单来说就是将不同种算法输入同一台电脑,统计时间的快慢。但是这种方法有两大缺陷:

  1. 无法排查实验自身条件与环境的条件的影响:比如同一种算法在不同配置的电脑上的运算速度可能完全不同,甚至结果完全相反。我们很难排查所有情况。
  2. 成本太高:同一种算法可能在数据少时表现不明显,在数据多时速率较快
(2) 理论分析法

由于实验分析法的局限性,就有人提出了一种理论测评的方法,就是渐近复杂度分析(asymptotic complexity analysis),简称复杂度分析

这种方法体现算法运行所需的时间(空间)资源与输入数据大小之间的关系,能有效的反应算法的优劣。

4. 时间复杂度与空间复杂度

4.1 时间复杂度

一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

为了准确的表述一段代表所需时间,我们先假设赋值(=)与加号(+)所需时间为1ns,乘号(×)所需时间为2ns,打印所需为3ns。

让我们计算如下代码所需总时间:

int main()
{int i = 1;//1nsint n = 0;//1nsscanf("%d", &n);for (i = 0; i < n; i++){printf("%d ", i);//3ns}return 0;
}

计算时间如下:
T ( n ) = 1 + 1 + 3 × n = 3 n + 2 T(n)=1+1+3×n=3n+2 T(n)=1+1+3×n=3n+2

但是实际上统计每一项所需时间是不现实的,并且由于是理论分析,当n—>∞时,其余项皆可忽略,T(n)的数量级由最高阶决定。所以我们计算时间复杂度时,可以简化为两个步骤:

  1. 忽略除最高阶以外的所有项。
  2. 忽略所有系数。

而上述代码时间可以记为O(n),这种方法被称为大O的渐进表示法。如果计算机结果全是常数,则记为O(1)。

  • 并且计算复杂度时,有时候会出现不同情况的结果,这是应该以最坏的结果考虑。

4.2 空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度的表示也遵循大O的渐进表示法

让我们计算一下冒泡排序的空间复杂度

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}
  • 通过观察我们可以看出,冒泡排序并没有开辟多余的空间,所以空间复杂度为O(1).

5. 复杂度分类

算法的复杂度有几个量级,表示如下:
O ( 1 ) < O ( l o g N ) < O ( N ) < O ( N l o g N ) < O ( N 2 ) < O ( 2 N ) < O ( N ! ) O(1) < O( log N) < O(N) < O(Nlog N) < O(N 2 ) < O(2^N) < O(N!) O(1)<O(logN)<O(N)<O(NlogN)<O(N2)<O(2N)<O(N!)

  • 从左到右复杂度依次递增,算法的缺点也就越明显

图示如下:

5.1 常数O(1)阶

常数阶是一种非常快速的算法,但是在实际应用中非常难实现

以下是一种时间复杂度与空间复杂度皆为O(1)的算法:

int main()
{int a = 0;int b = 1;int c = a + b;printf("两数之和为%d\n", c);return 9;
}

5.2 对数阶O(logN)

对数阶是一种比较快的算法,它一般每次减少一半的数据。我们常用的二分查找算法的时间复杂度就为O(logN)

二分查找如下:

int binary_search(int nums[], int size, int target) //nums是数组,size是数组的大小,target是需要查找的值
{int left = 0;int right = size - 1;	// 定义了target在左闭右闭的区间内,[left, right]while (left <= right) {	//当left == right时,区间[left, right]仍然有效int middle = left + ((right - left) / 2);//等同于 (left + right) / 2,防止溢出if (nums[middle] > target) {right = middle - 1;	//target在左区间,所以[left, middle - 1]} else if (nums[middle] < target) {left = middle + 1;	//target在右区间,所以[middle + 1, right]} else {	//既不在左边,也不在右边,那就是找到答案了return middle;}}//没有找到目标值return -1;
}

空间复杂度为O(logN)的算法,一般为分治算法

比如用递归实现二分算法:

int binary_search(int ar[], int low, int high, int key)
{if(low > high)//查找不到return -1;int mid = (low+high)/2;if(key == ar[mid])//查找到return mid;else if(key < ar[mid])return Search(ar,low,mid-1,key);elsereturn Search(ar,mid+1,high,key);
}

每一次执行递归都会对应开辟一个空间,也被称为栈帧

5.3 线性阶O(N)

线性阶算法,时间复杂度与空间复杂度随着数量均匀变化。

遍历数组或者链表是常见的线性阶算法,以下为时间复杂度为O(N)的算法:

int main()
{int n = 0;int count = 0;scanf("%d", &n);for (int i = 0; i < n; i++){count += i;//计算0~9的和}return 0;
}

以下为空间复杂度为O(N)的算法

int main()
{int n = 0;int count = 0;scanf("%d", &n);int* p = (int*)malloc(sizeof(int) * n);//开辟大小为n的空间if (p == NULL){perror("malloc fail");return -1;}free(p);p=NULL;return 0;
}

5.4 线性对数阶O(NlogN)

无论是时间复杂度还是空间复杂度,线性对数阶一般出现在嵌套循环中,即一层的复杂度为O(N),另一层为O(logN)

比如说循环使用二分查找打印:

int binary_search(int nums[], int size, int target) //nums是数组,size是数组的大小,target是需要查找的值
{int left = 0;int right = size - 1;	// 定义了target在左闭右闭的区间内,[left, right]while (left <= right) {	//当left == right时,区间[left, right]仍然有效int middle = left + ((right - left) / 2);//等同于 (left + right) / 2,防止溢出if (nums[middle] > target) {right = middle - 1;	//target在左区间,所以[left, middle - 1]}else if (nums[middle] < target) {left = middle + 1;	//target在右区间,所以[middle + 1, right]}else {	//既不在左边,也不在右边,那就是找到答案了printf("%d ", nums[middle]);}}//没有找到目标值return -1;
}
void func(int nums[], int size, int target)
{for (int i = 0; i < size; i++){binary_search(nums, size, target);}
}

空间复杂度为O(NlogN)的算法,最常见的莫非归并排序

void Merge(int sourceArr[],int tempArr[], int startIndex, int midIndex, int endIndex){int i = startIndex, j=midIndex+1, k = startIndex;while(i!=midIndex+1 && j!=endIndex+1) {if(sourceArr[i] > sourceArr[j])tempArr[k++] = sourceArr[j++];elsetempArr[k++] = sourceArr[i++];}while(i != midIndex+1)tempArr[k++] = sourceArr[i++];while(j != endIndex+1)tempArr[k++] = sourceArr[j++];for(i=startIndex; i<=endIndex; i++)sourceArr[i] = tempArr[i];
}//内部使用递归
void MergeSort(int sourceArr[], int tempArr[], int startIndex, int endIndex) {int midIndex;if(startIndex < endIndex) {midIndex = startIndex + (endIndex-startIndex) / 2;//避免溢出intMergeSort(sourceArr, tempArr, startIndex, midIndex);MergeSort(sourceArr, tempArr, midIndex+1, endIndex);Merge(sourceArr, tempArr, startIndex, midIndex, endIndex);}
}

5.5 平方阶O(N2)

平方阶与线性对数阶相似,常见于嵌套循环中,每层循环的复杂度为O(N)

时间复杂度为O(N2),最常见的就是冒泡排序

void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i - 1] > a[i]){Swap(&a[i - 1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}

计算过程如下;
T ( N ) = 1 + 2 + 3 + . . . . . . + n − 1 = ( n 2 − n ) / 2 = O ( n 2 ) T(N)=1+2+3+......+n-1=(n^2-n)/2=O(n^2) T(N)=1+2+3+......+n1=(n2n)/2=O(n2)

空间复杂度为O(N2),最简单的就是动态开辟。

{int n = 0;int count = 0;scanf("%d", &n);int* p = (int*)malloc(sizeof(int) * n*n);//开辟大小为n的空间if (p == NULL){perror("malloc fail");return -1;}free(p);p=NULL;return 0;
}

5.6 指数阶O(2N)

指数阶的算法效率低,并不常用。

常见的时间复杂度为O(2N)的算法就是递归实现斐波拉契数列:

int Fib1(int n)
{if (n == 1 || n == 2){return 1;}else{return Fib1(n - 1) + Fib1(n - 2);}
}

粗略估计
T ( n ) = 2 0 + 2 1 + 2 2 + . . . . . + 2 ( n − 1 ) = 2 n − 1 = O ( 2 N ) T(n)=2^0+2^1+2^2+.....+2^(n-1)=2^n-1=O(2^N) T(n)=20+21+22+.....+2(n1)=2n1=O(2N)

  • 值得一提的是斐波拉契的空间复杂度为O(N),因为在递归至最深处后往回归的过程中,后续空间都在销毁的空间上建立的,这样能大大提高空间的利用率。

空间复杂度为O(2N)的算法一般与树有关,比如建立满二叉树

TreeNode* buildTree(int n) {if (n == 0)return NULL;TreeNode* root = newTreeNode(0);root->left = buildTree(n - 1);root->right = buildTree(n - 1);return root;
}

5.7 阶乘阶O(N!)

阶乘阶的算法复杂度最高,几乎不会采用该类型的算法。

这是一个时间复杂度为阶乘阶O(N!)的算法

int func(int n)
{if (n == 0)return 1;int count = 0;for (int i = 0; i < n; i++) {count += func(n - 1);}return count;
}

示意图:

  • 空间复杂度为阶乘阶O(N!)的算法并不常见,这里就不在一一列举。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/712273.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

600万订单每秒Disruptor +SpringBoot,如何解决消息不丢失?

尼恩说在前面 在40岁老架构师 尼恩的读者交流群(50)中&#xff0c;最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、shein 希音、百度、网易的面试资格&#xff0c;遇到很多很重要的面试题&#xff1a; Disruptor 官方说能达到每秒600w OPS订单处理能力&…

【C语言】指针初阶2.0版本

这篇博文我们来继续学习指针的其他内容 指针2.0 传值调用与传址调用传值调用传址调用 一维数组与指针理解数组名使用指针深入理解一维数组 二级指针指针数组二维数组与指针 传值调用与传址调用 在开始之前&#xff0c;我们需要先了解这个概念&#xff0c;后面才能够正常的学习…

利用 Python 抓取数据探索汽车市场趋势

一、引言 随着全球对环境保护意识的增强和技术的进步&#xff0c;新能源汽车作为一种环保、高效的交通工具&#xff0c;正逐渐受到人们的关注和青睐。在这个背景下&#xff0c;对汽车市场的数据进行分析和研究显得尤为重要。 本文将介绍如何利用 Python 编程语言&#xff0c;结…

VSCode上搭建C/C++开发环境(vscode配置c/c++环境)Windows系统---保姆级教程

引言劝退 VSCode&#xff0c;全称为Visual Studio Code&#xff0c;是由微软开发的一款轻量级&#xff0c;跨平台的代码编辑器。大家能来搜用VSCode配置c/c&#xff0c;想必也知道VSCode的强大&#xff0c;可以手握一个VSCode同时编写如C&#xff0c;C&#xff0c;C#&#xff…

微服务day02-Ribbon负载均衡与Nacos安装与入门

一.Ribbon负载均衡 在上一节中&#xff0c;我们通过在RestTemplte实例中加上了注解 LoadBalanced,表示将来由RestTemplate发起的请求会被Ribbon拦截和处理&#xff0c;实现了访问服务时的负载均衡&#xff0c;那么他是如何实现的呢&#xff1f; 1.1 Ribbon负载均衡的原理 Rib…

LabVIEW非接触式电阻抗层析成像系统

LabVIEW非接触式电阻抗层析成像系统 非接触式电阻抗层析成像&#xff08;NEIT&#xff09;技术以其无辐射、非接触、响应速度快的特点&#xff0c;为实时监测提供了新的解决方案。基于LabVIEW的电阻抗层析成像系统&#xff0c;实现了数据的在线采集及实时成像&#xff0c;提高…

Java SE:多线程(Thread)

1. 线程两个基本概念 并发&#xff1a;即线程交替运行多个指令并行&#xff1a;即多个线程同时运行指令 并发并行不矛盾&#xff0c;两者可同时发生&#xff0c;即多个线程交替运行指令 2. 多线程3种实现方式 2.1 直接创建线程对象 /*** 方式1&#xff1a;* 1. 创建thread类的…

【Linux系统化学习】信号的保存

目录 阻塞信号 信号处理常见方式概览 信号的其他相关概念 在内核中的表示 sigset_t 信号集操作函数 sigprocmask函数 sigpending函数 信号的捕捉 内核如何实现信号的捕捉 sigaction函数 可重入函数 volatile 阻塞信号 信号处理常见方式概览 当信号来临时&#x…

GEE:使用Sigmoid激活函数对单波段图像进行变换(以NDVI为例)

作者:CSDN @ _养乐多_ 本文将介绍在 Google Earth Engine (GEE)平台上,对任意单波段影像进行 Sigmoid 变换的代码。并以对 NDVI 影像像素值的变换为例。 文章目录 一、Sigmoid激活函数1.1 什么是 Sigmoid 激活函数1.2 用到遥感图像上有什么用?二、代码链接三、完整代码一…

MYSQL02高级_目录结构、默认数据库、表文件、系统独立表空间

文章目录 ①. MySQL目录结构②. 查看默认数据库③. MYSQL5.7和8表文件③. 系统、独立表空间 ①. MySQL目录结构 ①. 如何查看关联mysql目录 [rootmysql8 ~]# find / -name mysql /var/lib/mysql /var/lib/mysql/mysql /etc/selinux/targeted/tmp/modules/100/mysql /etc/seli…

前端src中图片img标签资源的几种写法?

在 Vue 项目中引用图片路径有几种不同的方法&#xff0c;具体取决于你的项目结构和配置。以下是几种常见的方式&#xff1a; 1. 静态资源目录 (Public) 如果你的图片放在了项目的 public 目录下&#xff08;例如&#xff0c;Vite 和 Create Vue App 脚手架工具通常使用这个目…

05 OpenCV图像混合技术

文章目录 理论算子示例 理论 其中 的取值范围为0~1之间 算子 addWeighted CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, double beta,double gamma, OutputArray dst, int dtype -1 ); 参数1&#xff1a;输入图像Mat …

2024年【广东省安全员A证第四批(主要负责人)】考试试卷及广东省安全员A证第四批(主要负责人)作业模拟考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 广东省安全员A证第四批&#xff08;主要负责人&#xff09;考试试卷根据新广东省安全员A证第四批&#xff08;主要负责人&#xff09;考试大纲要求&#xff0c;安全生产模拟考试一点通将广东省安全员A证第四批&#x…

钉钉机器人发送折线图卡片 工具类代码

钉钉机器人 “创建并投放卡片 接口 ” 可以 发送折线图、柱状图 官方文档&#xff1a;创建并投放卡片 - 钉钉开放平台 0依赖、1模板、2机器人放到内部应用、3放开这个权限 、4工具类、5调用工具类 拼接入参 卡片模板 自己看文档创建&#xff0c;卡片模板的id 有用 0、依赖…

Springboot项目中定时任务的四种实现方式

文章目录 1. 使用Scheduled注解1.1 时间间隔执行1.2 固定时间点执行 2. 使用EnableScheduling注解启用定时任务3. 实现SchedulingConfigurer接口4. 使用Quartz框架4.1 配置QuartzScheduler4.2 定义Job类和Trigger类 5. 总结 在开发现代应用时&#xff0c;定时任务是一个非常常见…

地图可视化绘制 | R-ggplot2 NC地图文件可视化

在推出两期数据分享之后&#xff0c;获取数据的小伙伴们也知道&#xff0c;数据格式都是NetCDF(nc) 格式网格数据&#xff0c;虽然我在推文分享中说明使用Python、R或者GIS类软件都是可以进行 处理和可视化绘制的&#xff0c;但是&#xff0c;还是有小伙伴咨询使用编程软件Pyth…

牛客周赛 Round 34(A,B,C,D,E,F,G)

把这场忘了。。官方也迟迟不发题解 比赛链接 出题人题解 A 小红的字符串生成 思路&#xff1a; 枚举四种字符串打印出来即可&#xff0c;为了防止重复可以用set先去一下重。 code&#xff1a; #include <iostream> #include <cstdio> #include <cstring&g…

day48 ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III

一遍过。 当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。所以这里就更感觉到&#xff0c;当前状态和前面状态会有一种依赖关系&#xff0c;那么这种依赖关系都是动规的递推公式。 class Solution { public:int rob(vector<int>& nums) {vector<vec…

门店纵深不足、入口有遮挡影响客流准确率?近景客流帮你搞定!

为了优化运营策略、提升门店营收&#xff0c;很多店铺和商场都会安装客流摄像机。但是在实际应用中&#xff0c;由于门店纵深受限等原因&#xff0c;导致无法使用之前的常规客流产品。 针对这种情况&#xff0c;悠络客最新研发了近景客流产品&#xff0c;即使存在入口被遮挡或门…

内网信息搜集

目录 内网基础知识 基本流程图 怎么判断是否在域内 常规信息类收集-应用&服务&权限等 cs信息搜集 bloodhound安装及使用 内网基础知识 工作组&#xff1a;将不同的计算机按照功能分别列入不同的组&#xff0c;想要访问某个部门的资源&#xff0c;只要在【网络】里…