第九章 动态规划
- 198.打家劫舍
- 213.打家劫舍II
- 337.打家劫舍III
- 代码随想录文章详解
198.打家劫舍
dp[i]
表示偷第i
家及之前所能获取的最大金额
偷第i
家:dp[i] = dp[i-2]+nums[i]
,不偷第i
家:dp[i] = dp[i-1]
func rob(nums []int) int {if len(nums) == 0 {return 0}if len(nums) == 1 {return nums[0]}dp := make([]int, len(nums))dp[0] = nums[0]dp[1] = max(nums[0], nums[1])for i := 2; i < len(nums); i++ {dp[i] = max(dp[i-1], dp[i-2]+nums[i])}return dp[len(nums) - 1]
}
因为抢劫到的最高金额只与前两间房屋有关,故采用滚动数组优化
first := nums[0]second := max(nums[0], nums[1])for i := 2; i < len(nums); i++ {temp := secondsecond = max(first+nums[i], second)first = temp}return second
213.打家劫舍II
上题扩展:房屋是环状的,意味着第一个房子和最后一个房子不能同时偷,故求解max(不偷第一个房子,不偷最后一个房子)
func rob(nums []int) int {if len(nums) == 0 {return 0}if len(nums) == 1 {return nums[0]}if len(nums) == 2 {return max(nums[0], nums[1])}return max(rob1(nums[1:]), rob1(nums[:len(nums)-1]))
}func rob1(nums []int) int {first := nums[0]second := max(nums[0], nums[1])for i := 2; i < len(nums); i++ {temp := secondsecond = max(first+nums[i], second)first = temp}return second
}
337.打家劫舍III
后序遍历:通过递归函数的返回值进行下一步求解
偷当前节点
,则当前节点的左右孩子都不能偷;不偷当前节点
,则当前节点的左右孩子可偷可不偷,取两种可能性的最大值。
func rob(root *TreeNode) int {var help func(root *TreeNode) (int, int)help = func(root *TreeNode) (int, int) {if root == nil {return 0, 0}leftRob, leftNoRob := help(root.Left)rightRob, rightNoRob := help(root.Right)rob := root.Val + leftNoRob + rightNoRobnoRob := max(leftRob, leftNoRob) + max(rightRob, rightNoRob)return rob, noRob}return max(help(root))
}
代码随想录文章详解
198.打家劫舍
213.打家劫舍II
337.打家劫舍III