【MATLAB】SVMD_ MFE_SVM_LSTM 神经网络时序预测算法

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解(SVMD)、多尺度特征提取(MFE)、聚类后展开支持向量机(SVM)和长短期记忆神经网络(LSTM)的优点,旨在实现对时间序列数据的高精度预测。以下是对该算法的详细介绍:

  1. 单变量分解(SVMD)

    • SVMD是一种针对单变量时间序列的分解方法。它旨在将原始时间序列分解为多个成分或模态,以便更好地理解和预测其行为。这种分解可能基于矩阵分解技术,如奇异值分解(SVD),或其他适合单变量时间序列分解的技术。

    • 通过SVMD,可以将原始时间序列转化为多个组成部分,每个组分可能代表不同的频率、趋势或周期性行为。

  2. 多尺度特征提取(MFE)

    • MFE技术用于从SVMD分解得到的各个成分中提取多尺度特征。这些特征可能包括统计特性、频域特性、时域特性等,能够全面描述每个成分在不同尺度上的行为。

    • 通过MFE,算法能够捕捉到时间序列中的局部和全局模式,为后续的预测模型提供更丰富、更有代表性的信息。

  3. 支持向量机(SVM)

    • SVM是一种常用的监督学习算法,特别适用于处理分类和回归问题。在SVMD_MFE_SVM_LSTM算法中,SVM用于初步预测SVMD分解后每个成分的未来值。

    • 利用历史数据和MFE提取的多尺度特征,SVM可以训练多个独立的预测模型,每个模型对应一个分解成分。这些模型能够捕捉到数据中的非线性关系,并为后续的LSTM模型提供初始预测结果。

  4. 长短期记忆神经网络(LSTM)

    • LSTM是一种特殊的循环神经网络(RNN),特别适合处理具有长期依赖关系的时间序列数据。在SVMD_MFE_SVM_LSTM算法中,LSTM用于进一步优化SVM的初步预测结果。

    • LSTM接收SVM的预测结果和MFE提取的多尺度特征作为输入,通过其内部的记忆单元和门控机制,学习到时间序列中的长期依赖关系。LSTM模型可以对每个分解成分进行更精确的预测。

综上所述,SVMD_MFE_SVM_LSTM神经网络时序预测算法结合了单变量分解、多尺度特征提取、支持向量机和长短期记忆神经网络的优点,旨在实现对时间序列数据的高精度预测。这种算法在金融市场预测、气象预报、能源消耗预测等领域具有广泛的应用前景。然而,需要注意的是,该算法的计算复杂度较高,需要适当的优化和调整以适应不同的应用场景。

2 出图效果

附出图效果如下:

3 代码获取

代码见附件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/708100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法D31 | 贪心算法1 | 455.分发饼干 376. 摆动序列 53. 最大子序和

贪心算法其实就是没有什么规律可言,所以大家了解贪心算法 就了解它没有规律的本质就够了。 不用花心思去研究其规律, 没有思路就立刻看题解。 基本贪心的题目 有两个极端,要不就是特简单,要不就是死活想不出来。 学完贪心之后再…

rhcsa(rh134)

shell 查看用户shell a、如下查看/etc/shells文件列出了系统上所有可用的 shell(具体的可用的 shell 列表可能会因不同的红帽版本和配置而有所不同) (如下图/etc/shells文件包含/bin/tmux并不意味着tmux是一个shell。实际上,/etc/…

CSS:弹性盒子Flexible Box布局

CSS:Flexible Box弹性盒子布局 一、flex布局原理 ​ flex是flexible Box的缩写,意为 ”弹性布局“,用来为盒状模型提供最大的灵活性,任何一个容器都可以指定为flex布局。 当我们的父盒子设置为flex布局之后,子元素的 float 、clear 和 vert…

4核8G服务器并发数多少?性能如何?

腾讯云4核8G服务器支持多少人在线访问?支持25人同时访问。实际上程序效率不同支持人数在线人数不同,公网带宽也是影响4核8G服务器并发数的一大因素,假设公网带宽太小,流量直接卡在入口,4核8G配置的CPU内存也会造成计算…

WPF应用程序使用MVVM模式

文章目录 一、前言二、正文:模式 - WPF应用程序使用MVVM设计模式2.0 一些术语2.1 秩序与混乱2.2 MVVM模式的演变2.3 为何WPF开发者喜爱MVVM2.4 Demo应用程序2.5 路由命令逻辑2.6 ViewModel类层次结构2.7 ViewModelBase类2.8 CommandViewModel类2.9 MainWindowViewMo…

Vueuse:打造高效的 Vue.js 开发利器

Vueuse:打造高效的 Vue.js 开发利器 Vueuse 是一个功能强大的 Vue.js 生态系统工具库,它提供了一系列的可重用的 Vue 组件和函数,帮助开发者更轻松地构建复杂的应用程序。本文将介绍 Vueuse 的主要特点和用法,以及它在 Vue.js 开发…

css - flex布局实现div横向滚动

父盒子: display: flex; //将容器设置为Flex布局。overflow-x: scroll; //设置容器水平方向出现滚动条。white-space: nowrap; //防止项目换行显示。 子盒子: flex: 0 0 auto; //设置项目为固定宽度。width: 200px; //设置项目的宽度。margin-rig…

【Vue的单选按钮不选中已解决亲测】

伙计,你是否因为后台给vue前端已经传入了对应的单选按钮的数据,为啥还是不选中呢!? 这个问题实话我百度乐很多都不能解决我的问题,最后机智如我的发现乐vue的自身的问题,后端返回的数据类型如果是数字int类…

Git 指令深入浅出【1】—— 文件管理

Git 指令深入浅出【1】—— 文件管理 一、新建仓库二、配置1. 基本指令2. 免密配置3. 简化指令 三、管理文件1. 常用文件管理指令(1)基本指令工作区暂存区版本库 (2)日志(3)查看修改 2. 版本回退&#xff0…

MySQL基础--10.1--sql查询各科成绩前三名

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 sql查询各科成绩前三名建表造数 方法一:使用加行号的方式查询方法二:使用子查询嵌套查询原理解析考虑并列情况 方法三:窗口函数1…

全面整理!机器学习常用的回归预测模型

Datawhale干货 作者:曾浩龙,Datawhale意向成员 前言 回归预测建模的核心是学习输入 到输出 (其中 是连续值向量)的映射关系。条件期望 是 到 的回归函数。简单来说,就是将样本的特征矩阵映射到样本标签空间。 图…

Springboot同一台服务器部署多个项目,导致redis混淆,如何根据不同项目区分

在Spring Boot应用中,如果在同一台服务器上部署了多个项目,并且每个项目都使用Redis作为缓存或存储,为了避免Redis数据混淆,你需要确保各个项目在访问Redis时使用不同的数据库索引号、键前缀或者连接配置。 以下是一些区分不同项目Redis数据的方法: 使用不同数据库索引:…

2024.02.28作业

模拟面试 1. 什么是回调函数 将函数作为另一函数的参数 实现:通过函数指针,如线程的创建函数 2. 结构体和共用体的区别 结构体的每个成员都会分配内存,大小为各个成员所占内存之和,内存对齐 共用体的内存以最大成员为主 3. 赋…

2024年 前端JavaScript Web APIs 第一天 笔记

1.1 -声明变量const优先 1.2 -DOM树和DOM对象 1.3 -获取DOIM元素 1.4 -DOM修改元素内容以及年会抽奖 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta http-equiv"X-UA-Compatible" content&quo…

【linux系统讲解】

linux系统详细介绍 1. linux系统2. 文件内容操作3. 权限和所有权4. 进程管理5. 用户和群组管理6. 系统信息7. 网络操作8. 打包和解压缩9. 软件包管理10. 系统控制 1. linux系统 Linux是一种强大的开源操作系统&#xff0c;被广泛用于服务器、桌面、手机及嵌入式设备&#xff0…

学习Sora技术报告Video generation models as world simulators

原文链接&#xff1a; Video generation models as world simulators (openai.com) 摘要&#xff1a; 我们探索了在视频数据上大规模训练生成模型。具体来说&#xff0c;我们在可变片长、分辨率和纵横比的视频和图像上联合训练文本条件扩散模型text-conditional diffusion mo…

【Java多线程】面试常考——锁策略、synchronized的锁升级优化过程以及CAS(Compare and swap)

目录 1、锁的策略 1.1、乐观锁和悲观锁 1.2、轻量级锁和重量级锁 1.3、自旋锁和挂起等待锁 1.4、普通互斥锁和读写锁 1.5、公平锁和非公平锁 1.6、可重入锁和不可重入锁 2、synchronized 内部的升级与优化过程 2.1、锁的升级/膨胀 2.1.1、偏向锁阶段 2.1.2、轻量级锁…

2024年阿里云2核4G云服务器性能如何?价格便宜有点担心

阿里云2核4G服务器多少钱一年&#xff1f;2核4G服务器1个月费用多少&#xff1f;2核4G服务器30元3个月、85元一年&#xff0c;轻量应用服务器2核4G4M带宽165元一年&#xff0c;企业用户2核4G5M带宽199元一年。本文阿里云服务器网整理的2核4G参加活动的主机是ECS经济型e实例和u1…

如何更好地准备考研复试呢

准备研究生复试需要全面而细致的策略&#xff0c;以下是一些建议&#xff0c;帮助你更好地应对复试&#xff1a; 深入了解复试流程和要求&#xff1a; 详细了解复试的流程、考察内容和评分标准&#xff0c;确保你对每个环节都有清晰的认识。如果可能&#xff0c;可以向学长学姐…

Groovy(第五节) Groovy 之集合

Groovy 可以直接在语言内使用集合。在 Groovy 中,不需要导入专门的类,也不需要初始化对象。集合是语言本身的本地成员。Groovy 也使集合(或者列表)的操作变得非常容易,为增加和删除项提供了直观的帮助。 可以将范围当作集合 在前一节学习了如何用 Groovy 的范围将循环变得…