【深度学习笔记】深度卷积神经网络——NiN

网络中的网络(NiN)

LeNet、AlexNet和VGG都有一个共同的设计模式:通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。
AlexNet和VGG对LeNet的改进主要在于如何扩大和加深这两个模块。
或者,可以想象在这个过程的早期使用全连接层。然而,如果使用了全连接层,可能会完全放弃表征的空间结构。
网络中的网络NiN)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机Lin.Chen.Yan.2013

(NiN块)

回想一下,卷积层的输入和输出由四维张量组成,张量的每个轴分别对应样本、通道、高度和宽度。
另外,全连接层的输入和输出通常是分别对应于样本和特征的二维张量。
NiN的想法是在每个像素位置(针对每个高度和宽度)应用一个全连接层。
如果我们将权重连接到每个空间位置,我们可以将其视为 1 × 1 1\times 1 1×1卷积层(如 sec_channels中所述),或作为在每个像素位置上独立作用的全连接层。
从另一个角度看,即将空间维度中的每个像素视为单个样本,将通道维度视为不同特征(feature)。

fig_nin说明了VGG和NiN及它们的块之间主要架构差异。
NiN块以一个普通卷积层开始,后面是两个 1 × 1 1 \times 1 1×1的卷积层。这两个 1 × 1 1 \times 1 1×1卷积层充当带有ReLU激活函数的逐像素全连接层。
第一层的卷积窗口形状通常由用户设置。
随后的卷积窗口形状固定为 1 × 1 1 \times 1 1×1

在这里插入图片描述

fig_nin

import torch
from torch import nn
from d2l import torch as d2ldef nin_block(in_channels, out_channels, kernel_size, strides, padding):return nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())

[NiN模型]

最初的NiN网络是在AlexNet后不久提出的,显然从中得到了一些启示。
NiN使用窗口形状为 11 × 11 11\times 11 11×11 5 × 5 5\times 5 5×5 3 × 3 3\times 3 3×3的卷积层,输出通道数量与AlexNet中的相同。
每个NiN块后有一个最大汇聚层,汇聚窗口形状为 3 × 3 3\times 3 3×3,步幅为2。

NiN和AlexNet之间的一个显著区别是NiN完全取消了全连接层。
相反,NiN使用一个NiN块,其输出通道数等于标签类别的数量。最后放一个全局平均汇聚层(global average pooling layer),生成一个对数几率 (logits)。NiN设计的一个优点是,它显著减少了模型所需参数的数量。然而,在实践中,这种设计有时会增加训练模型的时间。

net = nn.Sequential(nin_block(1, 96, kernel_size=11, strides=4, padding=0),nn.MaxPool2d(3, stride=2),nin_block(96, 256, kernel_size=5, strides=1, padding=2),nn.MaxPool2d(3, stride=2),nin_block(256, 384, kernel_size=3, strides=1, padding=1),nn.MaxPool2d(3, stride=2),nn.Dropout(0.5),# 标签类别数是10nin_block(384, 10, kernel_size=3, strides=1, padding=1),nn.AdaptiveAvgPool2d((1, 1)),# 将四维的输出转成二维的输出,其形状为(批量大小,10)nn.Flatten())

我们创建一个数据样本来[查看每个块的输出形状]。

X = torch.rand(size=(1, 1, 224, 224))
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)
Sequential output shape:	 torch.Size([1, 96, 54, 54])
MaxPool2d output shape:	 torch.Size([1, 96, 26, 26])
Sequential output shape:	 torch.Size([1, 256, 26, 26])
MaxPool2d output shape:	 torch.Size([1, 256, 12, 12])
Sequential output shape:	 torch.Size([1, 384, 12, 12])
MaxPool2d output shape:	 torch.Size([1, 384, 5, 5])
Dropout output shape:	 torch.Size([1, 384, 5, 5])
Sequential output shape:	 torch.Size([1, 10, 5, 5])
AdaptiveAvgPool2d output shape:	 torch.Size([1, 10, 1, 1])
Flatten output shape:	 torch.Size([1, 10])

[训练模型]

和以前一样,我们使用Fashion-MNIST来训练模型。训练NiN与训练AlexNet、VGG时相似。

lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
loss 0.563, train acc 0.786, test acc 0.790
3087.6 examples/sec on cuda:0

在这里插入图片描述

小结

  • NiN使用由一个卷积层和多个 1 × 1 1\times 1 1×1卷积层组成的块。该块可以在卷积神经网络中使用,以允许更多的每像素非线性。
  • NiN去除了容易造成过拟合的全连接层,将它们替换为全局平均汇聚层(即在所有位置上进行求和)。该汇聚层通道数量为所需的输出数量(例如,Fashion-MNIST的输出为10)。
  • 移除全连接层可减少过拟合,同时显著减少NiN的参数。
  • NiN的设计影响了许多后续卷积神经网络的设计。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/707787.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux------进程地址空间

目录 一、进程地址空间 二、地址空间本质 三、什么是区域划分 四、为什么要有地址空间 1.让进程以统一的视角看到内存 2.进程访问内存的安全检查 3.将进程管理与内存管理进行解耦 一、进程地址空间 在我们学习C/C的时候,一定经常听到数据存放在堆区、栈区、…

4、正则表达式、本地存储

一、正则表达式 1、定义 用事先定义好的一些特定字符,这样的字符组合,组合成一个“规则字符串” 2、正则的组成 特殊字符 字母、数字、下划线、中文、特殊字符… 元字符(常用) 1、\d 匹配至少有一个数字 var reg /\d/ /…

SpringBoot整合rabbitmq-直连交换机队列(二)

说明:本文章主要是Direct定向/直连类型交换机的使用,它的大致流程是将一个队列绑定到一个直连交换机上,并赋予一个路由键 routingkey,当一个消息携带着路由值为routingkey,这个消息通过生产者发送给交换机时&#xff0…

【冲击蓝桥篇】动态规划(下):你还在怕动态规划!?进来!答题模板+思路解析+真题实战

🎉🎉欢迎光临🎉🎉 🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀 🌟特别推荐给大家我的最新专栏《数据结构与算法:初学者入门指南》📘&am…

Python中检查一个数字是否是科技数的完整指南

目录 前言 什么是科技数? 如何判断一个数字是否是科技数? 分割数字并计算平方 Python实现科技数检测的示例代码 科技数的应用场景 1. 数字游戏 2. 数据处理 3. 算法优化 4. 数据结构设计 总结 前言 科技数(Tech Number)是一…

(二十三)Flask之高频面试点

目录: 每篇前言:Q1:为什么把request和session放在一起?Q2:Local对象的作用?Q3::LocalStack对象的作用?Q4:一个运行中的Flask应用程序分别包括几个Local/LocalStack&#…

若依前后端分离版开源项目学习

前言:vscode中vue代码没有高亮显示,可以下载vetur插件解决,ctrl点击无法跳转函数定义问题,可以下载vue-helper插件解决;idea中ctrl点击函数即可跳转函数定义。 一、登录 1.生成验证码 基本思路: 后端生…

vue a-table 实现指定字段相同数据合并行

vue a-table 实现相同数据合并行 实现效果代码实现cloums数据格式数据源格式合并代码 实现效果 代码实现 cloums数据格式 const getColumns function () {return [{title: "分类",dataIndex: "checked",width: "150px",customRender: (text, …

JMeter--9.录制脚本

录制步骤 1.新建线程组:测试计划->线程->线程组 测试计划下,至少要有1个线程组,因为在录制器中需要选择【目标控制器】 2. 新建录制器:测试计划->非测试原件->HTTP(S)测试脚本记录器(HTTP代理服务器&…

Ansible自动化运维(四)jinja2 模板、Roles角色详解

👨‍🎓博主简介 🏅云计算领域优质创作者   🏅华为云开发者社区专家博主   🏅阿里云开发者社区专家博主 💊交流社区:运维交流社区 欢迎大家的加入! 🐋 希望大家多多支…

Springboot+vue的考务报名平台(有报告)。Javaee项目,springboot vue前后端分离项目。

演示视频: Springbootvue的考务报名平台(有报告)。Javaee项目,springboot vue前后端分离项目。 项目介绍: 本文设计了一个基于Springbootvue的前后端分离的考务报名平台,采用M(model&#xff0…

vue2后台管理系统demo,包含增删查改、模糊搜索、分页

因一直敲小程序,vue不熟练,自己练手项目,就包含增删查改以及模糊搜索分页 一、页面简单但功能齐全 二、数据是mock模拟 三、启动步骤 1、 json-server --watch data.json 启动mock数据 2、npm i 下载依赖 3、npm run serve 四、github地址…

ETH网络中的账户

ETH网络中的账户 Externally owned accounts (EOA) - 外部账户 由用户控制,我们导入助记词创建的账户就属于此类账户。 Contract accounts (smart contracts) - 合约账户 合约账户由以太坊虚拟机执行的代码控制。它也被称为智能合约。合约帐户有相关的代码和数据存…

Redis的高性能之道

前言:做码农这么多年,我也读过很多开源软件或者框架的源码,在我看来,Redis是我看过写得最优美、最像一件艺术品的软件,正如Redis之父自己说的那样,他宁愿以一个糟糕的艺术家身份而不是一名好程序员被别人记…

探索AI视频模型的无限可能:OpenAI的Sora引领创新浪潮

文章目录 📑前言一、技术解析二、应用场景三、未来展望四、伦理与创意五、用户体验与互动🌤️总结 📑前言 随着人工智能技术的蓬勃发展,AI视频模型正逐渐成为科技领域的新宠。在这个变革的浪潮中,OpenAI推出的首个AI视…

算法沉淀——动态规划之回文串问题(上)(leetcode真题剖析)

算法沉淀——动态规划之回文串问题 01.回文子串02.最长回文子串03.分割回文串 IV04.分割回文串 II05.最长回文子序列06.让字符串成为回文串的最少插入次数 01.回文子串 题目链接:https://leetcode.cn/problems/palindromic-substrings/ 给你一个字符串 s &#xf…

雾锁王国服务器官方配置要求说明

雾锁王国/Enshrouded服务器CPU内存配置如何选择?阿里云服务器网aliyunfuwuqi.com建议选择8核32G配置,支持4人玩家畅玩,自带10M公网带宽,1个月90元,3个月271元,幻兽帕鲁服务器申请页面 https://t.aliyun.com…

【机器人最短路径规划问题(栅格地图)】基于蚁群算法求解

基于蚁群算法求解机器人最短路径规划问题的仿真结果 仿真结果 收敛曲线变化趋势 蚁群算法求解最优解的机器人运动路径 各代蚂蚁求解机器人最短路径的运动轨迹

Java+SpringBoot+Vue:瑜伽馆管理的黄金组合

✍✍计算机毕业编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java、…