时隔一年的测评:gpt3.5发展到什么程度了?

名人说:一花独放不是春,百花齐放花满园。——《增广贤文》
作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)

目录

      • 一、简要介绍
        • 1、chatgpt是什么?
        • 2、主要特点
        • 3、工作原理
        • 4、应用限制
        • 5、使用方法
      • 二、分类问题测试
        • 1、基础问答(5个)
        • 2、数学题解答(5个)
        • 3、逻辑推理(5个)
        • 4、创造性写作(3个)
        • 5、代码编写(3个)
        • 6、对话理解与情感交流(2个)
        • 7、翻译任务(1个)
        • 8、策略规划(1个)
      • 三、测试感受

★观前提示以下内容仅为测试内容,不代表未来新版本如何测试体验,只讲述体验,本篇文章不做对比。

在人工智能领域,OpenAI的GPT(Generative Pre-trained Transformer)系列模型已经成为了一个名扬四海的名称。ChatGPT-3.5,作为这一系列的一个里程碑,不仅在技术界引起了广泛的关注,也在普通用户中掀起了一股学习和探索的热潮,这就不禁引发了一系列思考:
在这里插入图片描述

一、简要介绍

1、chatgpt是什么?

在这里插入图片描述
ChatGPTOpenAI开发的大语言模型,属于GPT(Generative Pre-trained Transformer)系列的一部分。它通过深度学习技术和大量数据训练,能够理解和生成自然语言文本。ChatGPT可以应用于多种场景,包括但不限于客户服务、教育辅导、内容创作等。

2、主要特点
  • 理解和生成文本:ChatGPT能够根据输入的文本理解上下文,并生成连贯、相关的回答。
  • 多样化应用:它可以用于问答系统、文本摘要、文章写作、编程代码辅助、语言翻译等多个领域。
  • 自然语言处理:ChatGPT在自然语言处理(NLP)方面表现出色,能够处理复杂的语言特征,包括语法、句式结构等。
  • 持续学习:虽然ChatGPT在部署后的学习能力有限,OpenAI定期更新模型,以包含新的数据和改进算法,使其性能持续提升。
3、工作原理

ChatGPT的工作原理基于Transformer架构,这是一种深度学习模型,特别适用于处理序列化的数据,如文本。

模型通过“注意力机制”来理解文本中的每个词与其他词之间的关系,这使得ChatGPT能够生成连贯且相关性强的文本。

4、应用限制

尽管ChatGPT在多个领域表现出色,但它也有一些限制,例如:

  • 信息时效性:ChatGPT的知识是到训练数据截止日期为止的,对于之后发生的事件或信息可能不了解。
  • 误解与错误:尽管准确率较高,ChatGPT仍可能产生误解或错误信息,特别是在处理复杂问题或缺乏明确上下文时。
  • 创造性限制:虽然能够生成新颖的文本,但ChatGPT的创造性受到训练数据的限制,它的“创意”来自于已经存在的信息组合。
5、使用方法

官网注册使用即可:chatgpt官网

在这里插入图片描述

了解了以上内容之后,咱们一起去测试体验一下:

二、分类问题测试

测试采用多类问题提问,以检验其多方面的功能。

1、基础问答(5个)
  • Q1: 澳大利亚的首都是哪座城市?(✔)

在这里插入图片描述

  • Q2: 地球与太阳之间的距离是多少?(✔)
    在这里插入图片描述
  • Q3: 水的沸点是多少度?(✔)
    在这里插入图片描述
  • Q4: 比萨斜塔在哪个国家?(✔)
    在这里插入图片描述
  • Q5: 世界上最长的河流是哪一条?(✔)
    在这里插入图片描述

从回答来看,5个问题均正确✔,相比刚发布时gpt3.0出现常识性错误,正确率高了不少。

2、数学题解答(5个)
  • Q1:小明有12个苹果,他想平均分给他的3个朋友(12个苹果分给3个人),请问每个朋友可以得到几个苹果?(小学难度 ✔)
    在这里插入图片描述

  • Q2:已知直角三角形的一条直角边长为5cm,另一条直角边长为12cm,求斜边的长度。(初中难度 ✔)

在这里插入图片描述

  • Q3:若一个二次函数表达式为 f ( x ) = a x 2 + b x + c ( a ≠ 0 ) f(x) = ax^2 + bx + c (a≠0) f(x)=ax2+bx+c(a=0),已知f(1)=0,f(2)=3,且f(x)图像经过点(3,10),请求出a、b、c的具体值。(初中难度 ✔)
    在这里插入图片描述
    在这里插入图片描述
  • Q4:在平面直角坐标系中,曲线C的方程为 y = x 3 − 6 x 2 + 9 x + 10 y = x^3 - 6x^2 + 9x + 10 y=x36x2+9x+10,求曲线C过原点处的切线方程。(高中难度 ✔)
    在这里插入图片描述
    在这里插入图片描述

这题虽然解对了,其实用到了一些高等数学的知识,这里要注意,高中数学涉及的并没有那么广泛。

  • Q5:计算函数 f(x) = x^3 - 2x^2 + x 在 x = 2 处的导数。(大学基础难度 ✔)

在这里插入图片描述

3、逻辑推理(5个)
  • Q1: 如果所有猫都喜欢吃鱼,而Tom是一只猫,那么Tom会喜欢吃鱼吗?(✔)

在这里插入图片描述

  • Q2: 假设A>B且B>C,请问A是否一定大于C?(✔)
    在这里插入图片描述
  • Q3: 你有1000kg蘑菇,含水量是99%。现在晒几天,晒到含水量为98%,那需要晒掉多少水?(✖)

在这里插入图片描述

正确答案:500kg。1000kg蘑菇含水量99%,就是水重990kg,固体蘑菇10kg。降到含水量98%就是固体蘑菇只占2%,然后用10除以2%就能得出蘑菇重量是500kg。所以答案是晒干了500kg水。

  • Q4: 有一个没有刻度的长方形的塑料盒子,没有盖子,它的容积是1升。请问如果只能使用这个盒子称量依次,能够准确地量出多少升的水?(半✔半✖)

在这里插入图片描述

正确答案:如果只能使用这个盒子称量一次,能够正确地量出 0.5 升的水。也能量出 1/6 升,将长方形盒子倾斜,水位到达盒子的上一边及底下的边线即可。

  • Q5: 72、36、24、18、( )(✖)
    在这里插入图片描述

正确答案:14.4

4、创造性写作(3个)
  • Q1: 请续写一个故事开头:“在一个寒冷的冬夜,小镇图书馆的灯突然熄灭了……”
    在这里插入图片描述

写的有模有样,这一年进步了不少。

  • Q2: 编写一首关于秋天落叶的五言律诗。

在这里插入图片描述

押上了居然,就是意境表达的有些冗杂。

  • Q3: 写一个关于人工智能与人关系的短篇小说。
    在这里插入图片描述

现在小说的前后逻辑性也更连贯了,牛!

5、代码编写(3个)
  • Q1: 用Python编写一个函数,用于判断一个数是否为质数。
    在这里插入图片描述
    gpt所写代码如下:
def is_prime(number):if number <= 1:return Falseif number <= 3:return Trueif number % 2 == 0 or number % 3 == 0:return Falsei = 5while i * i <= number:if number % i == 0 or number % (i + 2) == 0:return Falsei += 6return True# 测试
print(is_prime(5))  # 输出: True
print(is_prime(10)) # 输出: False
print(is_prime(17)) # 输出: True

在这里插入图片描述

  • Q2: 用Python编写一个程序,检查一个字符串是否为回文(正读反读都一样的词)。
    在这里插入图片描述
    gpt所写代码如下:
def is_palindrome(s):# 去除字符串中的非字母字符并转换为小写s = ''.join(c.lower() for c in s if c.isalnum())# 检查字符串是否等于其反转return s == s[::-1]# 测试
print(is_palindrome("A man, a plan, a canal, Panama"))  # 输出: True
print(is_palindrome("racecar"))                        # 输出: True
print(is_palindrome("hello"))                          # 输出: False

在这里插入图片描述

测试了下,成功运行并得到正确反馈。

  • Q3: 用Python编写一个程序,实现二叉树的深度优先搜索(DFS),并返回所有节点的遍历顺序。
    在这里插入图片描述
class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef dfs(root):if root is None:return []stack = [root]result = []while stack:node = stack.pop()result.append(node.value)if node.right:stack.append(node.right)if node.left:stack.append(node.left)return result# 测试
# 构造二叉树
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)
root.right.left = TreeNode(6)
root.right.right = TreeNode(7)print(dfs(root))  # 输出: [1, 2, 4, 5, 3, 6, 7]

在这里插入图片描述

6、对话理解与情感交流(2个)
  • Q1: 我今天心情不好,能给我讲个笑话吗?
    在这里插入图片描述

虽然挺冷的,但是我确实笑了。

  • Q2: 你能帮我分析一下最近压力大的原因,并提供缓解压力的方法吗?

在这里插入图片描述

给的方法还不错,现在语言逻辑相比一年前也更好了。

7、翻译任务(1个)
  • Q: 将这段文字翻译成英语:“张骞(Zhang Qian)是中国第一个伟大的探险家。他不畏艰险,克服重重困难,两次出使西域,开通了中国同西亚和欧洲的通商关系,将中国的丝和丝织品运往西亚和欧洲,开拓了历史上著名的“丝绸之路”。同时,他又将西域的风土人情、地理文化以及特有物种等介绍到中原,极大地开阔了人们的视野。
    正如历史学家所指出的那样,如果没有张骞出使西域,就不可能有丝绸之路的开辟,也就不会有汉朝同西域或欧洲的文化交流。”(六级翻译原题

在这里插入图片描述

  • Q: 再将这段英语翻译成中文

在这里插入图片描述

可以看出,文本翻译的效果还是不错的。

8、策略规划(1个)
  • Q: 假设你是某初创公司的CEO,公司在市场扩张过程中遇到了资金短缺问题,你将如何制定一份详尽的战略计划,既保证业务持续增长又能吸引新的投资者?
    在这里插入图片描述

这计划竟然有些合理?整体不错

本次测评就到这里,接下来总结一下感受。

三、测试感受

gpt3.5相比于一年前,能力明显地得到了提升,但是要想替代很多岗位目前还是很难的,我们要有危机感,但不能杞人忧天,提升自身能力才是重点。

放大了来说,GPT是自然语言处理领域的一个重要进展,通过模仿人类的对话方式,它在提供信息、协助文本创作等方面展现了巨大潜力。然而,gpt也有它的局限性,使用时要注意,以免造成不可挽回的损失。

关于测试暂时测试这些,很感谢你能看到这里,如有相关疑问,还请下方评论留言。
Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊)
如果对大家有帮助的话,希望大家能多多点赞+关注!这样我的动力会更足!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/707381.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

亚信安慧AntDB助力全链路实时化

实时数据平台&#xff0c;快速实现企业全链路实时化 引入数据仓库、数据挖掘、HTAP等先进理念&#xff0c;通过实时数据应用平台来装载庞大的信息量&#xff0c;进行实时分析处理&#xff0c;克服数据处理过程中的困难&#xff0c;是当下各企事业单位、互联网、金融&#xff0c…

大数据集群管理软件 CDH、Ambari、DataSophon 对比

文章目录 引言工具介绍CDHAmbariDataSophon 对比分析 引言 大数据集群管理方式分为手工方式和工具方式&#xff0c;手工方式一般指的是手动维护平台各个组件&#xff0c;工具方式是靠大数据集群管理软件对集群进行管理维护。本文针对于常见的方法和工具进行比较&#xff0c;帮助…

早产儿视网膜病变分期,自动化+半监督(无需大量医生标注数据)

早产儿视网膜病变 ROP 分期 提出背景解法框架解法步骤一致性正则化算法构建思路 实验 提出背景 论文&#xff1a;https://www.cell.com/action/showPdf?piiS2589-0042%2823%2902593-2 早产儿视网膜病变&#xff08;ROP&#xff09;目前是全球婴儿失明的主要原因之一。 这是…

Dledger部署RocketMQ高可用集群(9节点集群)

文章目录 &#x1f50a;博主介绍&#x1f964;本文内容规划集群准备工作节点0配置&#xff08;ip地址为192.168.80.101的机器&#xff09;节点1配置&#xff08;ip地址为192.168.80.102的机器&#xff09;节点2配置&#xff08;ip地址为192.168.80.103的机器&#xff09;在所有…

C语言--- 指针(3)

一.字符指针变量 在指针的类型中&#xff0c;我们知道有一种指针类型为字符指针char * 一般使用&#xff1a; #include<stdio.h> int main() {char ch a;char* p &ch;*p b;printf("%c\n",ch);return 0; } 其实还有一种使用方式 &#xff1a; #inc…

用了这么久的python,这些零碎的基础知识,你还记得多少?

python内置的数据类型 Python3.7内置的关键字 [False, None, True, and, as, assert, async, await, break, class, continue, def, del, elif, else, except, finally, for, from, global, if, import, in, is, lambda,nonlocal, not, or, pass, raise, return, try, while, …

vue专栏总纲

博主个人小程序已经上线&#xff1a;【中二少年工具箱】 小程序二维如下&#xff1a; 正文开始 专栏简介专栏初衷 专栏简介 本系列文章由浅入深&#xff0c;从基础知识到实战开发&#xff0c;非常适合入门同学。 零基础读者也能成功由本系列文章入门&#xff0c;但如果您具…

Unity中字符串拼接0GC方案

本文主要分析C#字符串拼接产生GC的原因&#xff0c;以及介绍名为ZString的库&#xff0c;它可以将字符串生成的内存分配为零。 在C#中&#xff0c;字符串拼接通常有三种方式&#xff1a; 直接使用号连接&#xff1b;string.format;使用StringBuilder&#xff1b; 下面分别细…

新版极狐gitlab安装+配置详细版

这里安装的服务器环境是centos7.9系统&#xff0c;安装极狐版本16.9。 极狐地址&#xff1a;https://gitlab.cn/install/ 1. 安装和配置所需的依赖 在 CentOS 7 上&#xff0c;下面的命令会在系统防火墙中打开 HTTP、HTTPS 和 SSH 访问。这是一个可选步骤&#xff0c;如果您…

Docker部署Portainer图形化管理工具

文章目录 前言1. 部署Portainer2. 本地访问Portainer3. Linux 安装cpolar4. 配置Portainer 公网访问地址5. 公网远程访问Portainer6. 固定Portainer公网地址 前言 Portainer 是一个轻量级的容器管理工具&#xff0c;可以通过 Web 界面对 Docker 容器进行管理和监控。它提供了可…

物业智能水电抄表管理系统

物业智能水电抄表管理系统是物业管理行业的关键技术之一&#xff0c;其结合了智能化、远程监控和数据分析等功能&#xff0c;为物业管理公司和业主提供了高效、精准的水电抄表管理解决方案。该系统具有多项优势&#xff0c;能够提升物业管理效率&#xff0c;降低成本&#xff0…

第五节:Vben Admin权限-前端控制方式

系列文章目录 第一节:Vben Admin介绍和初次运行 第二节:Vben Admin 登录逻辑梳理和对接后端准备 第三节:Vben Admin登录对接后端login接口 第四节:Vben Admin登录对接后端getUserInfo接口 第五节:Vben Admin权限-前端控制方式 文章目录 系列文章目录前言一、Vben Admin权…

py32 link,让PY32单片机开发更容易上手。

py32 link支持PY32系列单片机的调试和烧录&#xff0c;⽀持Keil、IAR等多种开发环境&#xff0c;开发简单易上手。PY32 link使用Type-C接⼝供电&#xff0c;搭载了MH32F103A芯片 LQFP64封装&#xff0c;MH32F103A有着216MHz主频和256KB flash&#xff0c;96KB RAM大资源&#x…

【Python】Code2flow学习笔记

1 Code2flow介绍 Code2flow是一个代码可视化工具库&#xff0c;旨在帮助开发人员更好地理解和分析代码&#xff1a; 可以将Python代码转换为流程图&#xff0c;以直观的方式展示代码的执行流程和逻辑结构。具有简单易用、高度可定制化和美观的特点&#xff0c;适用于各种代码…

Groovy(第九节) Groovy 之单元测试

JUnit 利用 Java 对 Song 类进行单元测试 默认情况下 Groovy 编译的类属性是私有的,所以不能直接在 Java 中访问它们,必须像下面这样使用 setter: 编写这个测试用例余下的代码就是小菜一碟了。测试用例很好地演示了这样一点:用 Groovy 所做的一切都可以轻易地在 Java 程序…

算法--动态规划(线性DP、区间DP)

这里写目录标题 tip数组下标从0开始还是从1开始 线性DP数学三角形介绍算法思想例题代码 最长上升子序列介绍算法思想例题代码 最长公共子序列介绍算法思想例题代码 编辑距离介绍例题代码 区间DP问题石子合并介绍算法思想例题代码 tip 数组下标从0开始还是从1开始 如果代码中涉…

Opencv实战(3)详解霍夫变换

霍夫变换 Opencv实战系列指路前文&#xff1a; Opencv(1)读取与图像操作 Opencv(2)绘图与图像操作 文章目录 霍夫变换1.霍夫线变换1.1 原理1.2 HoughLines() 2.霍夫圆变换2.1 原理2.2 HoughCircles() 最基本的霍夫变换是从黑白图像中检测直线(线段) 霍夫变换(Hough Transform…

【vue】什么是虚拟Dom,怎么实现虚拟DOM,虚拟DOM一定更快吗

什么是虚拟Dom 虚拟 DOM 基于虚拟节点 VNode&#xff0c;VNode 本质上是一个对象&#xff0c;VDOM 就是VNode 组成的 废话&#xff0c;js 中所有的东西都是对象 虚拟DOM 为什么快&#xff0c;做了哪些优化 批量更新 多个DOM合并更新减少浏览器的重排和重绘局部更新 通过新VDO…

Spring中的ApplicationContext.publishEvent

简单理解 其实就是监听处理。比如找工作平台上&#xff0c;雇主 employer 发布自己的雇佣条件&#xff0c;目的是平台中有符合条件的求职者时&#xff0c;及时向雇主推荐。求职者发布简历&#xff0c;当平台发现某个求职者比较符合条件&#xff0c;就触发被动&#xff0c;推荐…

selenium元素等待及滚动条滚动

selenium三大等待&#xff0c;sleep&#xff08;强制&#xff09;、implicitlyWait&#xff08;隐式等待&#xff09;、WebDriverWait&#xff08;显式等待&#xff09;&#xff0c;主要记一下最后面的WebDriverWait。 WebDriverWait是三大等待中最常用也是最好用的一种等待方…