【推荐算法系列十六】:协同过滤

文章目录

  • 参考
  • 原理
    • 基于邻域的协同过滤算法
      • 基于用户的协同过滤(User-Based Collaborative Filtering)
      • 基于内容的协同过滤
    • 基于模型的协同过滤算法
  • 扩展
  • 优缺点

参考

推荐系统之神经协同过滤

原理

基于邻域的协同过滤算法

基于邻域的协同过滤算法又包括
基于用户的协同过滤算法和基于内容的协同过滤算法。
核心思想都一样:收集用户的行为记录,找到用户的偏好并找到与偏好相似的内容,计算比重再推荐给用户。

基于用户的协同过滤(User-Based Collaborative Filtering)

通过分析用户之间的相似性来实现推荐。简单来说,就是根据用户的历史行为(比如浏览、购买、评分等)来找到与其兴趣相似的其他用户,然后向该用户推荐这些相似用户喜欢的商品或内容。

得到用户喜欢物品的共现矩阵
在这里插入图片描述
基于用户的协同过滤算法的优点在于能够捕捉用户的偏好和行为模式,同时也比较容易实现和解释。但该算法也存在一些缺点,如用户数量较多时计算量大、推荐结果容易出现重复等。

  • 为每个用户创建一个兴趣向量,向量中包含该用户浏览、购买、评分等行为对应的商品或内容。
  • 通过计算用户之间的相似度,找到与目标用户相似度最高的一些用户。
  • 根据这些相似用户对商品或内容做出的行为,将对应商品或内容推荐给目标用户。

基于内容的协同过滤

其推荐的对象不是与目标用户相似的其他用户,而是与该用户曾经感兴趣的内容相似的其他内容。

该算法具体的推荐步骤如下。

  • 为每个内容创建一个分类向量,向量中包含了该内容与其他内容的相似度。
  • 根据用户曾经感兴趣的内容,找到这些内容与哪些其他内容相似度比较高。
  • 将这些相似度高的内容推荐给目标用户。

基于模型的协同过滤算法

基于模型的协同过滤(Model-based Collaborative Filtering)是协同过滤方法的一种,它与传统的基于邻域的协同过滤方法不同。基于模型的协同过滤是通过训练一个模型来预测用户对物品的评分或者喜好,而不是直接基于用户或物品之间的相似性来进行推荐。

基于模型的协同过滤通常包括以下步骤:

  • 建立模型:首先,选择一个合适的模型结构,可以是基于统计模型、机器学习模型或深度学习模型。常用的模型包括矩阵分解模型(如隐语义模型)、概率图模型、神经网络模型等。
  • 模型训练:使用已知的用户-物品交互数据进行模型训练。训练的目标是通过拟合已有数据来学习模型参数,使得模型能够准确地预测用户对未知物品的评分或者喜好。
  • 预测评分:训练好模型后,可以使用该模型来预测用户对未知物品的评分或者喜好。根据预测的评分,可以为用户生成个性化的推荐列表。

基于模型的协同过滤相比于基于邻域的协同过滤具有以下优点:

可扩展性:模型训练过程通常可以并行化,因此能够有效地处理大规模数据。
泛化能力:模型可以从数据中学习到用户和物品的隐藏特征,具有更好的泛化能力。
冷启动问题:模型可以利用物品的特征信息进行推荐,因此能够更好地应对冷启动问题(新用户或新物品的推荐)。
常见的基于模型的协同过滤算法包括基于矩阵分解的隐语义模型、基于概率图模型的贝叶斯网络模型、基于神经网络的深度学习模型等。

扩展

根据参考中的内容,
可以使用 矩阵分解和DNN的方式来做隐式向量的获取。

优缺点

协同过滤有一个天然的缺陷,就是其对稀疏数据的处理比较弱,头部效应比较明显,泛化能力比较差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/706390.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在 Android 运行 GNU/Linux 二进制程序 (proot)

在 GNU/Linux 系统上运行 Android 应用比较容易 (比如 waydroid), 但是反过来就很麻烦了. Android 虽然也使用 Linux 内核 (kernel), 但是系统环境和一般的 GNU/Linux 系统 (比如 ArchLinux, Debian, Ubuntu, Fedora, NixOS 等) 具有不可忽略的显著差异, 所以为 GNU/Linux 编译…

【React源码 - 调度任务循环EventLoop】

我们知道在React中有4个核心包、2个关键循环。而React正是在这4个核心包中运行,从输入到输出渲染到web端,主要流程可简单分为一下4步:如下图,本文主要是介绍两大循环中的任务调度循环。 4个核心包: react:…

4核8G服务器多少钱?腾讯云和阿里云哪家便宜?

4核8G云服务器多少钱一年?阿里云ECS服务器u1价格955.58元一年,腾讯云轻量4核8G12M带宽价格是646元15个月,阿腾云atengyun.com整理4核8G云服务器价格表,包括一年费用和1个月收费明细: 云服务器4核8G配置收费价格 阿里…

网站的安全防护需要注意哪些问题?有什么方法可以加固网站的防护

网站的安全防护,是一项复杂性、多方面的系统工程。现如今网络安全风险的增加,使得上至国家部门机关,小到个人博客,都有可能遭受网络安全问题。说到网络安全问题,比如:竞争最为激烈的游戏行业,从…

MySQL数据库进阶第六篇(InnoDB引擎架构,事务原理,MVCC)

文章目录 一、InnoDB引擎逻辑储存结构二、架构——内存结构三、架构——磁盘结构四、架构——后台线程五、事务原理持久性:redo log。重做日志原子性:undo log。回滚日志 六、MVCC基本概念七、MVCC实现原理八、undo log日志 回滚日志,版本链九…

shell中正则表达式讲解

1. 概念 在进行程序设计的过程中,用户会不可避免地遇到处理某些文本的情况。有的 时候,用户还需要查找符合某些比较复杂规则的字符串。对于这些情况,如果 单纯依靠程序设计语言本身,则往往会使得用户通过复杂的代码来实现。但 是&…

在linux上不依赖于Nignx等服务器部署ASP.NET Core 7.0 WebAPI

笔者近期需要部署一款基于B/S架构的后端程序在linux的Debian发行版上,本文章以本次部署遇到的问题为线索,总结如何在Debian上部署ASP.NET Core7.0WebAPI应用程序。 在linux上不依赖于Nignx等服务器部署ASP.NET Core 7.0 WebAPI 1.先决条件2.应用发布3.部…

3D可视化项目,选择unity3D还是three.js,是时候挑明了。

2023-08-10 23:07贝格前端工场 Hi,我是贝格前端工场,在开发3D可视化项目中,是选择U3D还是three,js时,很多老铁非常的迷茫,本文给老铁们讲清楚该如何选择,欢迎点赞评论分享转发。 一、Unity3D和three.js简…

[Mac软件]Adobe Substance 3D Stager 2.1.4 3D场景搭建工具

应用介绍 Adobe Substance 3D Stager,您设备齐全的虚拟工作室。在这个直观的舞台工具中构建和组装 3D 场景。设置资产、材质、灯光和相机。导出和共享媒体,从图像到 Web 和 AR 体验。 处理您的最终图像 Substance 3D Stager 可让您在上下文中做出创造性…

网络原理——HTTPS

HTTPS是 在HTTP的基础上,引入了一个加密层(SSL)。 1. 为什么需要HTTPS 在我们使用浏览器下载一些软件时,相信大家都遇到过这种情况:明明这个链接显示的是下载A软件,点击下载时就变成了B软件,这种情况是运…

计算机设计大赛 深度学习手势检测与识别算法 - opencv python

文章目录 0 前言1 实现效果2 技术原理2.1 手部检测2.1.1 基于肤色空间的手势检测方法2.1.2 基于运动的手势检测方法2.1.3 基于边缘的手势检测方法2.1.4 基于模板的手势检测方法2.1.5 基于机器学习的手势检测方法 3 手部识别3.1 SSD网络3.2 数据集3.3 最终改进的网络结构 4 最后…

深入理解Python中的JSON模块:基础大总结与实战代码解析【第102篇—JSON模块】

深入理解Python中的JSON模块:基础大总结与实战代码解析 在Python中,JSON(JavaScript Object Notation)模块是处理JSON数据的重要工具之一。JSON是一种轻量级的数据交换格式,广泛应用于Web开发、API通信等领域。本文将…

WinForms中的Timer探究:Form Timer与Thread Timer的差异

WinForms中的Timer探究:Form Timer与Thread Timer的差异 在Windows Forms(WinForms)应用程序开发中,定时器(Timer)是一个常用的组件,它允许我们执行定时任务,如界面更新、周期性数据…

osi模型,tcp/ip模型(名字由来+各层介绍+中间设备介绍)

目录 网络协议如何分层 引入 osi模型 tcp/ip模型 引入 命名由来 介绍 物理层 数据链路层 网络层 传输层 应用层 中间设备 网络协议如何分层 引入 我们已经知道了网络协议是层状结构,接下来就来了解了解下网络协议如何分层 常见的网络协议分层模型是OSI模型 和 …

windows 连接 Ubuntu 失败 -- samba服务

1. windows10连接ubuntu的时候,提示不允许一个用户使用一个以上用户名与服务器或共享资源的多重连接,中断与此服务器或共享资源的所有连接,然后再试一次 2. 换一台同事的电脑却又可以连上,我之前一直能用的,隔一段时间…

UE5 C++ 单播 多播代理 动态多播代理

一. 代理机制,代理也叫做委托,其作用就是提供一种消息机制。 发送方 ,接收方 分别叫做 触发点和执行点。就是软件中的观察者模式的原理。 创建一个C Actor作为练习 二.单播代理 创建一个C Actor MyDeligateActor作为练习 在MyDeligateAc…

【蓝桥杯】包子凑数(DP)

一.题目描述 二.输入描述 三.输出描述 四.问题分析 几个两两互质的数,最大公约数是1,最小公倍数是他们的乘积。 两个互质的数a和b最小不能表示的数就是(a-1)(b-1)-1,即,两个互质的数…

uniapp_微信小程序日历

一、需求要求这样 二、代码实现 <view class"calender" click"showriliall"><text class"lineText">探视日期&#xff1a;</text><text class"middleText">{{timerili}}</text><image src"/s…

Ubuntu服务器fail2ban的使用

作用&#xff1a;限制ssh远程登录&#xff0c;防止被人爆破服务器&#xff0c;封禁登录ip 使用lastb命令可查看到登录失败的用户及ip&#xff0c;无时无刻的不在爆破服务器 目录 一、安装fail2ban 二&#xff0c;配置fail2ban封禁ip的规则 1&#xff0c;进入目录并创建ssh…

【c++leetcode】1382. Balance a Binary Search Tree

问题入口 DSW (DAY, STOUT & WARREN) ALGORITHM 时间复杂度O(n) class Solution { public:int makeVine(TreeNode* grand, int cnt 0){auto n grand->right;while (n ! nullptr){if(n->left ! nullptr){auto old_n n;n n->left;old_n->left n->righ…