QT连接OpenCV库完成人脸识别

1.相关的配置

1> 该项目所用环境:qt-opensource-windows-x86-mingw491_opengl-5.4.0

2> 配置opencv库路径:

1、在D盘下创建一个opencv的文件夹,用于存放所需材料

2、在opencv的文件夹下创建一个名为:opencv3.4-qt-intall 文件夹

3、将资料中的opencv_library的install文件,复制到opencv3.4-qt-intall 文件夹中

4、将路径:D:\opencv\opencv3.4-qt-intall\install\x86\mingw\bin 放入电脑的系统路径中

3> 测试是否配置好

创建一个新的qt工程,将对应配置文件和头文件放入后,不报错就说明配置成功

2.关于图像处理的相关类和函数 

1> Mat类,图像容器

2> 读取图像

Mat imread( const String& filename, int flags = IMREAD_COLOR );
//功能:读取出图像
//参数:图像路径
//返回值:读取的图像

3> 命名展示图像的窗口 

void namedWindow(const String& winname, int flags = WINDOW_AUTOSIZE);
功能:命名一个图像窗口
参数1:窗口名称
参数2:窗体尺寸,默认为自适应大小
返回值:无

4> 展示图像 

void imshow(const String& winname, const ogl::Texture2D& tex);
//功能:展示图像
//参数1:要展示图像的窗口名称
//参数2:要展示的二维图像
//返回值:无
#include "widget.h"
#include <QApplication>int main(int argc, char *argv[])
{QApplication a(argc, argv);Widget w;w.show();//1、定义一个图像容器Mat src;//2、将图像加载进来//函数原型:Mat imread( const String& filename, int flags = IMREAD_COLOR );//参数:图像的路径//返回值:图像容器src = imread("D:/opencv/resource/age.jpg");//4、命名一个展示图像的窗口//namedWindow("Test");//5、展示图像//函数原型:void imshow(const String& winname, const ogl::Texture2D& tex);//参数1:要展示图像的窗口名称//参数2:要展示的图像//返回值:无imshow("Test", src);return a.exec();
}

 3.视频流相关类和函数

1> 视频流类:VideoCapture

2> 打开视频:

 virtual bool open(const String& filename);//参数:要打开视频的路径//返回值:成功返回true失败返回false

3> 打开摄像头只需在构造时,调用构造函数参数传递0即可

4> 读取视频流中图像

virtual bool read(OutputArray image);
功能:读取视频流中的图像
参数:图像容器
返回值:成功读取返回true,失败或者视频结束返回false

 5> 图像翻转

void flip(InputArray src, OutputArray dst, int flipCode);
//将图像进行旋转
//参数1:要处理的图像
//参数2:处理后的图像容器
//参数3:处理规则:0:表示沿x翻转,1表示沿y轴翻转,-1表示沿xy轴翻转

6> 休眠阻塞函数

int waitKey(int delay = 0);
功能:阻塞等待用户输入数据,如果delay=0,则一直等待
参数:毫秒数
返回值:在等待过程中用户按下键的值
#include "widget.h"
#include <QApplication>int main(int argc, char *argv[])
{QApplication a(argc, argv);Widget w;w.show();//1、定义视频流对象VideoCapture v(0);             //表明使用摄像头构造一个视频流对象//2、读取摄像头中的图像Mat src;                   //用于存放读取出来的图像//函数原型:virtual bool read(OutputArray image);//功能:从视频流中读取一张图像放入参数中//参数:图像容器//返回值:成功返回真,失败或者读取视频结束返回假while(v.read(src)){//将图像进行翻转//函数原型:void flip(InputArray src, OutputArray dst, int flipCode);//参数1:要翻转的图像//参数2:翻转后的图像容器//参数3:翻转规则:正数表示按y轴翻转,0表示按x轴翻转,负数表示按xy轴翻转flip(src, src, 1);//展示图像imshow("Test1", src);//加延时函数//函数原型:int waitKey(int delay = 0);//参数:等待时间//返回值:在等待期间用户按下的键盘的ascii值    ESC键对应的值为27if(waitKey(20)==27){break;}}return a.exec();
}

4.图像处理

1> 灰度处理

void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );
功能:转换图像色彩空间
//参数1:要转换的图像
//参数2:转变后图像容器
//参数3:转换规则:BGR to gray
返回值:无

2> 均衡化处理

void equalizeHist( InputArray src, OutputArray dst ); 
参数1:输入的灰度图像,必须是8-bit的单通道图像  
参数2:输出的图像 
图像直方图:对整个图像在灰度范围内的像素值(0-255)统计出现的频率,据此生成直方图,直 方图反应了图像的灰度分布情况。
#include "widget.h"
#include <QApplication>int main(int argc, char *argv[])
{QApplication a(argc, argv);Widget w;w.show();//1、定义视频流对象VideoCapture v(0);             //表明使用摄像头构造一个视频流对象//2、读取摄像头中的图像Mat src;                   //用于存放读取出来的图像Mat gray;                   //用于存储灰度图的图像容器Mat dst;                     //用于存储均衡化处理后的图像容器//函数原型:virtual bool read(OutputArray image);//功能:从视频流中读取一张图像放入参数中//参数:图像容器//返回值:成功返回真,失败或者读取视频结束返回假while(v.read(src)){//将图像进行翻转//函数原型:void flip(InputArray src, OutputArray dst, int flipCode);//参数1:要翻转的图像//参数2:翻转后的图像容器//参数3:翻转规则:正数表示按y轴翻转,0表示按x轴翻转,负数表示按xy轴翻转flip(src, src, 1);//3、将图像灰度处理//函数原型:void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );//参数1:要转换的图像//参数2:转换后的图像容器//参数3:转换规则  CV_BGR2GRAY表示将bgr彩色图转换为gray灰度图//返回值:无cvtColor(src, gray, CV_BGR2GRAY);//4、对图像进行均衡化处理//函数原型:void equalizeHist( InputArray src, OutputArray dst );//参数1:要进行均衡化处理的图像,必须是单通道灰度图//参数2:均衡化处理后的图像容器//返回值:无equalizeHist(gray, dst);//展示彩色图像imshow("Test1", src);//展示灰度图像imshow("Test2", gray);//展示均衡化处理后的图像imshow("Test3", dst);//加延时函数//函数原型:int waitKey(int delay = 0);//参数:等待时间//返回值:在等待期间用户按下的键盘的ascii值    ESC键对应的值为27if(waitKey(20)==27){break;}}return a.exec();
}

5.级联分类器 

1> opencv级联分类器工具类 : CascadeClassifier //struct Student

2> 加载级联分类器配置文件 : bool load( const String& filename )

参数1:分类器数据文件的名字

返回值:成功true,失败false

3> 找到人脸所在位置的矩形区域

void detectMultiScale(
const Mat& image, 
CV_OUT vector& objects,    //int arr[4]; 
double scaleFactor = 1.1,
int minNeighbors = 3, 
int flags = 0, 
Size ize = Size(24,24))
参数1:待检测灰度图像(数据少处理起来简单) 
参数2:被检测物体的矩形框向量( 人脸Rect矩形区域,其中objects.size()是人脸个数 ) 
参数3:前后两次相继的扫描中搜索窗口的比例系数,默认为1.1 即每次搜索窗口扩大10% 
参数4:构成检测目标的相邻矩形的最小个数 如果组成检测目标的小矩形的个数和小于 minneighbors - 1 都会被除 
参数5:若设置为CV_HAAR_DO_CANNY_PRUNING 函数将会使用Canny边缘检测来排除边缘过多 或过少的区域,,一般采用默认值0 
参数6:用来限制得到的目标区域的范围,一般检测人脸使用Size(24, 24)

4> 人脸部分的矩形区域显示出来

void rectangle(CV_IN_OUT Mat& img, Rect rec,const Scalar& color, int thickness = 1,int lineType = LINE_8, int shift = 0);
img:图像。 
rec:表征矩形的位置和长宽。 
color:线条颜色 (RGB) 。 
thickness:组成矩形的线条的粗细程度。 
line_type:线条的类型。 
shift:坐标点的小数点位数,0表示没有小数点。
#include "widget.h"
#include <QApplication>int main(int argc, char *argv[])
{QApplication a(argc, argv);Widget w;w.show();//1、定义视频流对象VideoCapture v(0);             //表明使用摄像头构造一个视频流对象//2、读取摄像头中的图像Mat src;                   //用于存放读取出来的图像Mat gray;                   //用于存储灰度图的图像容器Mat dst;                     //用于存储均衡化处理后的图像容器//5、实例化一个级联分类器的对象,用于找到图像中的人脸矩形区域CascadeClassifier c;//给类对象装载人脸识别模型//函数原型:bool load( const String& filename );//功能:给级联分类器对象,下载一个识别模型//参数:人脸识别模型的文件路径//返回值:成功下载返回真,失败返回假if(!c.load("D:/opencv/resource/haarcascade_frontalface_alt2.xml")){QMessageBox::information(NULL,"失败", "人脸识别模型装载失败");return -1;}//定义容器存放人脸分类后的矩形框vector<Rect> faces;//函数原型:virtual bool read(OutputArray image);//功能:从视频流中读取一张图像放入参数中//参数:图像容器//返回值:成功返回真,失败或者读取视频结束返回假while(v.read(src)){//将图像进行翻转//函数原型:void flip(InputArray src, OutputArray dst, int flipCode);//参数1:要翻转的图像//参数2:翻转后的图像容器//参数3:翻转规则:正数表示按y轴翻转,0表示按x轴翻转,负数表示按xy轴翻转flip(src, src, 1);//3、将图像灰度处理//函数原型:void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 );//参数1:要转换的图像//参数2:转换后的图像容器//参数3:转换规则  CV_BGR2GRAY表示将bgr彩色图转换为gray灰度图//返回值:无cvtColor(src, gray, CV_BGR2GRAY);//4、对图像进行均衡化处理//函数原型:void equalizeHist( InputArray src, OutputArray dst );//参数1:要进行均衡化处理的图像,必须是单通道灰度图//参数2:均衡化处理后的图像容器//返回值:无equalizeHist(gray, dst);//6、使用级联分类器对象,获取人脸矩形区域//函数原型:void detectMultiScale( InputArray image,CV_OUT std::vector<Rect>& objects)//参数1:要进行识别的图像//参数2:对该图像识别后,的矩形框存放的数组容器c.detectMultiScale(dst, faces);//7、将上述得到的矩形框,全部都绘制到图像上for(int i=0; i<faces.size(); i++){//将任意一个矩形框,全部都绘制到图像上//函数原型:void rectangle(CV_IN_OUT Mat& img, Rect rec,const Scalar& color, int thickness = 1)//参数1:要被绘制的图像//参数2:要绘制的矩形框//参数3:矩形框的颜色//参数4:矩形框的粗细//返回值:无rectangle(src, faces[i], Scalar(0,0,255), 2);}//8、像素反差for(int i=0; i<src.rows; i++)        //外层循环控制行数{for(int j=0; j<src.cols; j++)        //内层循环控制列数{//找到任意一个像素:src.at<Vec3b>(i,j)//找到任意一个像素中的通道中的值src.at<Vec3b>(i,j)[k]for(int k=0; k<3; k++){src.at<Vec3b>(i,j)[k] = 255 - src.at<Vec3b>(i,j)[k];  //对像素进行反差}}}//展示彩色图像imshow("Test1", src);//展示灰度图像imshow("Test2", gray);//展示均衡化处理后的图像imshow("Test3", dst);//加延时函数//函数原型:int waitKey(int delay = 0);//参数:等待时间//返回值:在等待期间用户按下的键盘的ascii值    ESC键对应的值为27if(waitKey(20)==27){break;}}return a.exec();
}

6. 介绍 

机器学习的作用:根据提供的图片模型通过算法生成数据模型,从而在其它图片中查找相关的目 标。

级联分类器:是用来人脸识别。 在判断之前,我们要先进行学习,生成人脸的模型以便后续识别使用。

人脸识别器:判断是谁的面部。 FaceRecognizer类是opencv提供的人脸识别器基类,LBPHFaceRecognizer是根据LBPH算法实 现的识别器类,其中LBPHFaceRecognizer识别器支持在原有模型基础上继续学习(模型数据可以累 计)。

7.创建LBPHFaceRecognizer识别器对象

 所需的头文件:#include 、using namespace cv::face;创建空的人脸识别器对象:Ptr<FaceRecognizer> recognizer =LBPHFaceRecognizer::create();​根据已有的模型创建人脸识别器对象,在创建人脸识别器的时候,需要一个已经学习好的模型文件:Ptr<FaceRecognizer> recognizer = FaceRecognizer::load<LBPHFaceRecognizer>("模型文件.xml");

8.机器学习并更新模型

 容器:容器中装了n张人脸Mat对象,先采集脸,装到容器中,存储标签,人的身份证,每一张脸给一个编号:1 张三脸 2 李四脸 3 王五脸。功能函数1:void update(InputArrayOfArray src,InputArray labels)//机器学习并更新模型功能函数2:void train(InputArrayOfArrays src,InputArray labels);//只是学习,不更新//参数1src:图片模型数组 vector<Mat>//参数2labels:标签数组,每个模型识别后的标签vector<int>

9.保存模型

功能函数:void save(const String& filename);//参数1:模型文件的名字
例如:
recognizer->update(study_faces,study_label);//学习
recognizer->save("face.xml");//将学习的成果,保存到face.xml模型文件中,生成模型:
study_faces.clear();、study_labels.clear();

10.预测目标

判断这个人脸到底是谁。
功能函数:
void predict(InputArray src,  int &label,  double &confidence)
//参数1:预测图形 Mat src
//参数2::预测后的标签,学习时对应的标签
//参数3:预测出结果的可信度,数值越小可信度越高
例如:
int label = -1;//预测后的标签,学习时对应的标签
double confidence = 0;//可信度
Mat face = frame(faces[0]);//人脸区域
cvtColor(face,face,CV_BGR2GRAY);//更改色彩空间
cv::resize(face,face,Size(90,90));//设置人脸的大小
recognizer->predict(face,label,confidence); //预测,相当于识别人脸,预测出人脸是谁的
面部,label的值就那张脸对应的标签,如果预测不到,label的值是-1。

11.设置可信度

功能函数:void setThreshold(double val);
//参数1:预测可信度极值,预测可信度超出极值则预测失败。

12.完整项目代码 

.pro文件:

#-------------------------------------------------
#
# Project created by QtCreator 2023-09-04T19:10:16
#
#-------------------------------------------------QT       += core guigreaterThan(QT_MAJOR_VERSION, 4): QT += widgetsTARGET = 01_demo
TEMPLATE = appSOURCES += main.cpp\widget.cppHEADERS  += widget.hFORMS    += widget.uiINCLUDEPATH += C:/opencv/opencv3.4-qt-install/install/include
INCLUDEPATH += C:/opencv/opencv3.4-qt-install/install/include/opencv
INCLUDEPATH += C:/opencv/opencv3.4-qt-install/install/include/opencv2
LIBS += C:/opencv/opencv3.4-qt-install/install/x86/mingw/lib/libopencv_*.a

头文件:

#ifndef WIDGET_H
#define WIDGET_H#include <QWidget>
#include <QWidget>
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
#include <opencv2/face.hpp>
#include <vector>
#include <map>
#include <QMessageBox>
#include <QDebug>
#include <QFile>
#include <QTextStream>
#include <QDateTime>
#include <QTimerEvent>
#include <QtSerialPort/QtSerialPort>
#include <QtSerialPort/QSerialPortInfo>
using namespace  cv;
using namespace cv::face;
using namespace std;namespace Ui {
class Widget;
}class Widget : public QWidget
{Q_OBJECTpublic:explicit Widget(QWidget *parent = 0);~Widget();private slots:void on_openCameraBtn_clicked();void on_closeCameraBtn_clicked();void on_inputFaceBtn_clicked();private:Ui::Widget *ui;/***************************第一模块:关于摄像头的相关组件*****************************/VideoCapture v;            //视频流对象Mat src;                   //原图像Mat rgb;                   //存放rgb图像,因为qt能识别的图像色彩空间为rgbMat gray;                  //灰度图Mat dst;                   //均衡化图像CascadeClassifier c;       //级联分类器vector<Rect> faces;        //存储人脸举行的容器int cameraId;              //摄像头的定时器void timerEvent(QTimerEvent *event);   //定时器事件处理函数/***************************第二模块:录入人脸的相关组件*****************************/Ptr<FaceRecognizer> recognizer;           //人脸识别器vector<Mat> study_face;                   //要录入的人脸容器vector<int> study_lab;                    //要录入的人脸的标签int studyId;                              //人脸录入的定时器int flag;                                 //表示是否正在录入人脸int count;                                //记录学习的次数/***************************第三模块:人脸检测的相关组件*****************************/int checkId;                   //人脸检测的定时器
};#endif // WIDGET_H

源文件: 

#include "widget.h"
#include "ui_widget.h"Widget::Widget(QWidget *parent) :QWidget(parent),ui(new Ui::Widget)
{ui->setupUi(this);//将登录按钮设置成不可用ui->loginBtn->setEnabled(false);//启动摄像头if(!v.open(0)){QMessageBox::information(this,"错误","打开摄像头失败");return;}//将级联分类器加载进来if(!c.load("C:/opencv/resource/haarcascade_frontalface_alt.xml")){QMessageBox::information(this,"失败","人脸识别模型装载失败");return;}//配置人脸识别器QFile file("C:/opencv/resource/myFace.xml");//判断文件是否存在,如果存在,则直接下载,如果不存在,则创建一个人脸识别器if(file.exists()){//人脸模型存在,直接下载即可recognizer = FaceRecognizer::load<LBPHFaceRecognizer>("C:/opencv/resource/myFace.xml");}else{//人脸模型不存在,则需要创建recognizer = LBPHFaceRecognizer::create();}//启动人脸检测到的定时器checkId = this->startTimer(3000);//设置人脸识别的可信度recognizer->setThreshold(100);flag = 0;          //表明开始时就处于检测
}Widget::~Widget()
{delete ui;
}//打开摄像头按钮对应的槽函数
void Widget::on_openCameraBtn_clicked()
{//启动定时器cameraId = this->startTimer(20);ui->cameraLab->show();
}//关闭摄像头按钮对应的槽函数
void Widget::on_closeCameraBtn_clicked()
{//关闭定时器this->killTimer(cameraId);ui->cameraLab->hide();
}//定时器事件处理函数
void Widget::timerEvent(QTimerEvent *event)
{//判断是哪个定时器到位if(event->timerId() == cameraId){//1.从摄像头中读取一张图像v.read(src);      //得到原图//2.将图像翻转flip(src,src,1);//3.将src的bgr图像转换为rgb图像cvtColor(src,rgb,CV_BGR2RGB);//4.重新设置大小cv::resize(rgb,rgb,Size(300,300));//5.灰度处理cvtColor(rgb,gray,CV_RGB2GRAY);//6.均衡化处理equalizeHist(gray,dst);//7.使用级联分类器获取人脸矩形区域c.detectMultiScale(dst,faces);//8.将矩形框绘制到rgb图像上for(int i=0; i<faces.size(); i++){rectangle(rgb,faces[i],Scalar(255,0,0),2);}//9.使用rgb图像,将Mat图,构造出一个qt能识别的图像QImage img(rgb.data,rgb.cols,rgb.rows,rgb.cols*rgb.channels(),QImage::Format_RGB888);//功能:通过其他图像构造出一个QImage图像//参数1:其他图像的数据//参数2:图像的宽度//参数3:图像的高度//参数4:每一行的字节数//参数5:图像格式,24位图,每一种颜色使用8位表示//10.将图像展示到lab中ui->cameraLab->setPixmap(QPixmap::fromImage(img));}//判断是否是人脸录入定时器到位if(event->timerId() == studyId){//判断ui界面是否有矩形框if(faces.empty())return;//判断人脸识别器是否存在if(recognizer.empty())return;//提示正在录入人脸qDebug() << "正在录入人脸...";//获取ui界面中矩形框框起来的人脸区域Mat face = src(faces[0]);//将该图像进行重新设置大小cv::resize(face,face,Size(100,100));//灰度处理cvtColor(face,face,CV_BGR2GRAY);//均衡化处理equalizeHist(face,face);//将人脸放入学习容器中study_face.push_back(face);study_lab.push_back(1);count++;                     //表明完成一次人脸的存放if(count == 50)              //已经收集50张人脸进行学习{count = 0;               //以便于下一次录入//更新人脸模型//函数原型:CV_WRAP virtual void update(InputArrayOfArrays src, InputArray labels);//参数1:要进行更新的人脸数组//参数2:要更新的人脸标签数组//返回值:无recognizer->update(study_face,study_lab);//将数据模型保存到本地磁盘中recognizer->save("C:/opencv/resource/myFace.xml");//殿后工作study_face.clear();       //清空人脸数组study_lab.clear();        //清空标签数组flag = 0;                 //表明录入已经结束,可以进行人脸检测了ui->inputFaceBtn->setEnabled(true);    //按钮设置成可用状态this->killTimer(studyId);              //关闭人脸录入的定时器QMessageBox::information(this,"成功","人脸录入成功");}}//判断是否是人脸检测的定时器到位if(event->timerId() == checkId){qDebug() << "正在检测...";//判断是否处于检测if(flag == 0){QFile file("C:/opencv/resource/myFace.xml");if(file.exists())              //表明人脸模型存在的基础上进行识别{if(faces.empty() || recognizer.empty()) return;              //ui界面无矩形框或者没有人脸识别器//到此表明可以进行检测Mat face = src(faces[0]);//重新设置大小,保持跟保存人脸时一致cv::resize(face,face,Size(100,100));//灰度处理cvtColor(face,face,CV_BGR2GRAY);//均衡化处理equalizeHist(face,face);//定义记录检测后返回的结果的变量int lab = -1;                //返回的图像的标签double conf = 0.0;           //返回图像的可信度//将该人脸进行预测recognizer->predict(face,lab,conf);qDebug() << "lab = " << lab << "  conf = " << conf;//对人脸识别后的结果进行判断if(lab != -1){ui->loginBtn->setEnabled(true);}}}}}//录入人脸按钮对应的槽函数
void Widget::on_inputFaceBtn_clicked()
{//启动人脸录入的定时器qDebug() << "开始进行人脸录入...";studyId = this->startTimer(60);//将按钮设置成不可用状态ui->inputFaceBtn->setEnabled(false);//将flag设置成1,表示正在录入人脸,不要进行人脸检测了flag = 1;count = 0;       //清空计数器}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/70626.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue-cli3项目本地启用https,并用mkcert生成证书

在项目根目录下的vue.config.js文件中&#xff1a; // vue.config.js module.exports {devServer: {host:dev.nm.cngc// 此处开启 https,并加载本地证书&#xff08;否则浏览器左上角会提示不安全&#xff09;https: {cert: fs.readFileSync(path.join(_dirname,./cert.crt)…

【docker】运行redis

拉取redis镜像 有多种选择&#xff1a; redis&#xff08;基础版&#xff09;redis/redis-stack&#xff08;包含redis stack server和RedisInsight&#xff09;redis/redis-stack-server&#xff08;仅包含redis stack server&#xff09; docker pull redis docker pull r…

Python Qt学习(十)一个简易的POP3邮件客户端

公司把126这类的邮箱网站都封了&#xff0c;正好现在无事&#xff0c;加之&#xff0c;算是一个对这俩周学习Qt的一个总结吧。遂写了这么一个简易的通过POP3协议接收126邮件的客户端。 源代码&#xff1a; # -*- coding: utf-8 -*-# Form implementation generated from read…

创建2个线程并执行(STL/Windows/Linux)

C并发编程入门 目录 STL 写法 #include <thread> #include <iostream> using namespace std;void thread_fun1(void) {cout << "one STL thread 1!" << endl; }void thread_fun2(void) {cout << "one STL thread 2!" <…

uni-app之android离线自定义基座

一 为什么要自定义基座 1&#xff0c;基座其实就是一个app&#xff0c;然后新开发的页面可以直接在手机上面显示&#xff0c;查看效果。 2&#xff0c;默认的基座就是uniapp帮我们打包好的基座app&#xff0c;然后我们可以进行页面的调试。 3&#xff0c;自定义基座主要用来…

【Java SE】抽象类与接口

目录 【1】抽象类 【1.1】抽象类概念 【1.2】抽象类语法 【1.3】抽象类特性 【1.4】抽象类的作用 【2】接口 【2.1】接口的概念 【2.2】语法规则 【2.3】接口使用 【2.4】接口特性 【2.5】实现多个接口 【2.6】接口间的继承 【2.7】接口使用实例 【2.8】Clonable …

SVPWM的原理及法则推导和控制算法详解

空间电压矢量调制 SVPWM 技术 SVPWM是近年发展的一种比较新颖的控制方法&#xff0c;是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波&#xff0c;能够使输出电流波形尽 可能接近于理想的正弦波形。空间电压矢量PWM与传统的正弦PWM不同&#xff0c;它…

通讯软件017——分分钟学会Kepware OPC UA Server配置

本文介绍如何配置Kepware OPC UA Server&#xff0c;通过本文可以对OPC UA的基本概念有所了解&#xff0c;掌握OPC UA的本质。更多通信资源请登录网信智汇(wangxinzhihui.com)。 1. 创建OPC UA Server 点击“OPC UA Configuration”&#xff0c;弹出配置界面。 点击“添加”&a…

java八股文面试[数据库]——explain

使用 EXPLAIN 关键字可以模拟优化器来执行SQL查询语句&#xff0c;从而知道MySQL是如何处理我们的SQL语句的。分析出查询语句或是表结构的性能瓶颈。 MySQL查询过程 通过explain我们可以获得以下信息&#xff1a; 表的读取顺序 数据读取操作的操作类型 哪些索引可以被使用 …

正中优配:政策预期叠加资金面压制 债市回调至“降息”前

地产方针利好和资金面边沿收紧的压制之下&#xff0c;债券商场出现了回调。 到9月6日收盘&#xff0c;10年期国债收益率上行2.4个基点报2.665%&#xff0c;已回到降息之前的点位。 资金面也在收敛&#xff0c;到6日收盘&#xff0c;DR001加权均匀利率报1.51%&#xff0c;较前…

一文讲解Linux内核内存管理架构

内存管理子系统可能是linux内核中最为复杂的一个子系统&#xff0c;其支持的功能需求众多&#xff0c;如页面映射、页面分配、页面回收、页面交换、冷热页面、紧急页面、页面碎片管理、页面缓存、页面统计等&#xff0c;而且对性能也有很高的要求。本文从内存管理硬件架构、地址…

mac制作ssl证书|生成自签名证书,nodejs+express在mac上搭建https+wss(websocket)服务器

注意 mac 自带 openssl 所以没必要像 windows 一样先安装 openssl&#xff0c;直接生成即可 生成 ssl/自签名 证书 生成 key # 生成rsa私钥&#xff0c;des3算法&#xff0c;server_ssl.key是秘钥文件名 1024位强度 openssl genrsa -des3 -out server_ssl.key 1024让输入两…

【前端】Vue2 脚手架模块化开发 -快速入门

&#x1f384;欢迎来到边境矢梦的csdn博文&#x1f384; &#x1f384;本文主要梳理Vue2 脚手架模块化开发 &#x1f384; &#x1f308;我是边境矢梦&#xff0c;一个正在为秋招和算法竞赛做准备的学生&#x1f308; &#x1f386;喜欢的朋友可以关注一下&#x1faf0;&#x…

iOS逆向进阶:iOS进程间通信方案深入探究与local socket介绍

在移动应用开发中&#xff0c;进程间通信&#xff08;Inter-Process Communication&#xff0c;IPC&#xff09;是一项至关重要的技术&#xff0c;用于不同应用之间的协作和数据共享。在iOS生态系统中&#xff0c;进程和线程是基本的概念&#xff0c;而进程间通信方案则为应用的…

【已解决】pycharm 突然每次点击都开新页面,关不掉怎么办?

今天在 pycharm 中写代码&#xff0c;突然发现&#xff0c;新开的文件不再原来的页面上&#xff0c;而是新增了页面&#xff0c;导致整个屏幕全都是新开的页面&#xff0c;最难受的是&#xff0c;关不掉&#xff01; 无奈&#xff0c;我只能关闭 pycharm&#xff0c;重新双击…

openGauss学习笔记-55 openGauss 高级特性-全密态数据库

文章目录 openGauss学习笔记-55 openGauss 高级特性-全密态数据库55.1 连接全密态数据库55.2 创建用户密钥55.3 创建加密表55.4 向加密表插入数据并进行查询 openGauss学习笔记-55 openGauss 高级特性-全密态数据库 全密态数据库意在解决数据全生命周期的隐私保护问题&#xf…

Java LinkedList

简介 链表&#xff08;Linked list&#xff09;是一种常见的基础数据结构&#xff0c;是一种线性表&#xff0c;但是并不会按线性的顺序存储数据&#xff0c;而是在每一个节点里存到下一个节点的地址。 链表可分为单向链表和双向链表。 在Java程序设计语言中&#xff0c;所有…

RabbtiMQ的安装与在Springboot中的使用!!!

一、安装Erlang与Rabbitmq 安装教程本教程是在centos8下试验的&#xff0c;其实linux系统的都差不多RabbitMQ官方&#xff1a;Messaging that just works — RabbitMQRabbitMQ是开源AMQP实现&#xff0c;服务器端用Erlang语言编写&#xff0c;Python、Ruby、 NET、Java、JMS、c…

机器学习笔记:轨迹驻留点 staypoint

1 定义 在轨迹数据分析中&#xff0c;"停留点"&#xff08;Staypoint&#xff09;是一个非常关键的概念&#xff0c;它反映了个体或物体在某一地点的停留行为。通常&#xff0c;在一段时间内&#xff0c;如果一个人或物体在一个较小的地理区域内的移动距离低于某个阈…

攻防世界-WEB-ics-05

打开靶机 只有设备维护中心可以点开 点标签得到新的url pageindex 想到文件包含漏洞&#xff08;URL中出现path、dir、file、pag、page、archive、p、eng、语言文件等相关关键字眼 利用php伪协议查看源码 出现一段base64源码&#xff0c;进行转码得出源码 ?pagephp://filter…