排序算法 —— 堆排序
算法基础介绍
堆排序(Heap Sort)是一种基于比较的排序算法,它利用堆这种数据结构来实现排序。堆是一种特殊的完全二叉树,其中每个节点的值都必须大于或等于(最大堆)或小于或等于(最小堆)其子节点的值。
基本概念
堆是一个近似完全二叉树的数据结构,满足任一非叶子节点的值不小于(或不大于)其左右孩子节点的值。堆通常分为最大堆和最小堆:
- 最大堆:每个节点的值都大于或等于其子节点的值。
- 最小堆:每个节点的值都小于或等于其子节点的值。
堆排序算法通过构建一个最大堆或最小堆,然后将堆顶元素(最大或最小值)与堆的最后一个元素交换,再将剩余的元素重新调整为最大堆或最小堆,如此反复,直到整个数组有序。
算法步骤
- 构建堆:将无序的输入数组转换为一个最大堆或最小堆。
- 堆排序:
- 将堆顶元素(最大或最小值)与堆的最后一个元素交换,将其移出堆。
- 调整剩余元素,使其重新成为一个最大堆或最小堆。
- 重复上述步骤,直到所有元素都被移出堆。
伪代码描述
function heapsort(array)build_max_heap(array)for end from size(array) down to 2 doswap array[1] with array[end]heap_size = heap_size - 1sift_down(array, 1)end for
end function
堆排序是一种高效的排序算法,具有以下优缺点:
优点
- 时间复杂度稳定:堆排序的时间复杂度为(O(nlog(n))),其中n是数组的长度。这个复杂度在所有比较排序算法中是最优的,因为比较排序的最坏时间复杂度为(O(nlog(n)))。
- 空间复杂度低:堆排序是原地排序,除了常数个额外空间用于存储递归栈之外,不需要额外的内存空间。
- 不稳定的排序算法:堆排序是不稳定的排序算法,这意味着如果两个元素相等,它们的相对顺序在排序后可能会改变。
- 适用于各种数据类型:堆排序可以适用于各种数据类型,包括整数、浮点数、字符串等,只要能够为这些数据类型定义合适的比较操作。
- 易于实现:堆排序的实现相对简单,尤其是使用二叉堆的实现。
缺点
- 最坏情况性能差:虽然平均时间复杂度为(O(nlog(n))),但在最坏情况下(输入数据完全逆序),堆排序的时间复杂度退化为(O(n^2))。
- 不稳定排序:对于某些需要稳定排序的应用场景(如数据库索引),堆排序可能不是最佳选择。
- 对内存要求高:虽然空间复杂度低,但在排序过程中,堆中的元素可能会频繁地移动,这可能导致较高的内存访问开销。
- 初始化堆的时间开销:虽然堆排序的总时间复杂度是(O(nlog(n))),但这个复杂度是在整个排序过程中累积的。在实际应用中,构建初始堆的过程可能会占用一定的时间。
总体而言,堆排序是一个在实际应用中广泛使用的排序算法,特别是当内存使用是一个关键因素时。然而,对于需要稳定排序的应用,或者当数据已经部分有序时,可能需要考虑其他排序算法,如归并排序或快速排序
应用场景
堆排序在实际开发过程中的常见应用场景包括:
- 优先级队列:堆排序是优先级队列实现的基础。在许多编程语言中,优先级队列(或称为最小堆)就是基于堆排序原理实现的。这种数据结构允许快速插入和删除最小元素,常用于任务调度、事件处理等场景。
- 排序算法比较:在开发中,为了验证新算法的性能,开发者可能会将堆排序与其他排序算法(如快速排序、归并排序)进行比较。堆排序因其简单性和稳定性,常作为基准算法之一。
- 数据挖掘:在数据挖掘和机器学习领域,堆排序可用于处理大规模数据集的预处理步骤,如特征选择、频繁项集挖掘等。
- 文件系统:堆排序可用于文件系统的目录排序,帮助用户快速找到文件。
- 数据库索引:虽然数据库通常使用B树或B+树索引,但在某些特殊情况下,堆排序可以作为辅助算法来优化索引的构建过程。
- 缓存管理:在缓存管理系统中,堆排序可用于维护缓存数据的有序性,例如,根据最近最少使用(LRU)策略来淘汰缓存项。
- 算法教学:堆排序是计算机科学教育中常用的教学示例,用于讲解数据结构和算法的概念。
- 图形处理:在图形处理中,堆排序可用于顶点排序,以便于后续的图形操作,如生成凸包、计算几何形状的交点等。
- 游戏开发:在游戏开发中,堆排序可用于实现游戏对象的优先级处理,例如,根据对象的属性(如生命值、攻击力等)对对象进行排序。
- 网络协议:在网络协议处理中,堆排序可用于数据包的优先级处理,确保高优先级的数据包得到优先处理。
堆排序的优点,如时间复杂度的稳定性和低空间复杂度,使其在需要快速、高效处理大规模数据的场景中非常有用。然而,它的不稳定性也是一个需要注意的点,特别是在需要保持数据相对顺序的应用中。
时间复杂度
最佳情况
在最佳情况下,输入数组已经是有序的,堆排序只需要进行一次建堆操作,然后进行一次简单的调整即可完成排序。因此,最佳情况下的时间复杂度是 (O(n))。
最坏情况
在最坏情况下,输入数组是完全逆序的,需要进行 n-1 次建堆操作,并且每次调整堆都需要将堆中的元素重新排列。因此,最坏情况下的时间复杂度是 (O(n^2))。
平均情况
在平均情况下,堆排序的时间复杂度是 (O(nlog(n)))。这是因为虽然最坏情况下的时间复杂度是 (O(n^2)),但在大多数实际应用中,数据并不是完全逆序的,因此平均时间复杂度更接近于 (O(nlog(n)))。
空间复杂度
堆排序是一个原地排序算法,除了用于存储递归栈的常数空间之外,不需要额外的内存空间。因此,空间复杂度是 (O(1))。
证明
时间复杂度证明
- 建堆操作:建堆操作的时间复杂度是 (O(n))。
- 调整堆:调整堆的时间复杂度是 (O(n))。
- 排序过程:排序过程需要进行 n-1 次调整堆的操作。
综合以上,堆排序的总时间复杂度是 (O(n + (n-1) * O(n)) = O(n^2))。
空间复杂度证明
堆排序是一个原地排序算法,除了用于存储递归栈的常数空间之外,不需要额外的内存空间。因此,空间复杂度是 (O(1))。
综上所述,堆排序的时间复杂度在最佳情况下为 (O(n)),最坏情况下为 (O(n^2)),平均情况下为 (O(nlog(n))),空间复杂度为 (O(1))。
代码实现
Python 实现
def heapify(arr, n, i):largest = ileft = 2 * i + 1right = 2 * i + 2if left < n and arr[i] < arr[left]:largest = leftif right < n and arr[largest] < arr[right]:largest = rightif largest != i:arr[i], arr[largest] = arr[largest], arr[i]heapify(arr, n, largest)def heapsort(arr):n = len(arr)for i in range(n//2 - 1, -1, -1):heapify(arr, n, i)for i in range(n-1, 0, -1):arr[i], arr[0] = arr[0], arr[i]heapify(arr, i, 0)
C++ 模板实现
Java 实现
扩展阅读
堆排序的时间复杂度优化主要集中在减少建堆和调整堆的次数上。以下是一些常见的优化方法:
时间复杂度的优化方法
- 减少比较次数:通过减少不必要的比较,可以减少建堆和调整堆的时间。例如,可以使用二叉堆的路径压缩技术,在调整堆的过程中减少子节点与父节点的比较次数。
- 使用斐波那契堆:斐波那契堆是一种数据结构,它可以在O(log n)的时间内完成堆的插入、删除和合并操作。这比二叉堆的O(log n)复杂度更优。
- 延迟删除:在某些实现中,为了避免频繁地调整堆,可以延迟删除操作,直到需要的时候才进行。
- 减少调整堆的次数:通过选择合适的堆大小和调整策略,可以减少调整堆的次数。
历史上常用的堆排序的变种算法
- 斐波那契堆:斐波那契堆是一种改进的堆数据结构,它可以在O(log n)的时间内完成堆的插入、删除和合并操作,比二叉堆更优。
- 二叉堆:二叉堆是最常见的堆实现,它包括最大堆和最小堆。二叉堆的调整操作通常需要O(log n)的时间复杂度。
- 左倾堆:左倾堆是一种特殊的堆实现,它通过减少堆的平衡调整次数来优化性能。
- 二项堆:二项堆是一种特殊的堆实现,它使用二项树的性质来优化堆的插入和删除操作。
- 二叉索引堆:二叉索引堆是一种结合了二叉堆和二叉树索引的数据结构,它可以在O(log n)的时间内完成堆的插入、删除和合并操作。
这些变种算法的目的是通过优化堆的实现细节,减少堆排序的时间复杂度,使其在实际应用中更加高效。在选择堆排序的变种算法时,需要考虑数据的特点和应用场景,以确定最适合的算法。
斐波那契堆排序
斐波那契堆排序(Fibonacci Heap Sort)是一种堆排序的变种,由Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, 和Robert E. Tarjan在1986年提出。斐波那契堆是一种数据结构,它提供了一种堆操作的实现,这些操作包括插入、删除最小元素、删除最小元素的父节点等,其时间复杂度几乎都是O(log n)。
基本概念
斐波那契堆是一种堆数据结构,它支持以下操作:
- 插入:将一个元素添加到堆中。
- 删除最小元素:移除堆中的最小元素。
- 删除最小元素的父节点:移除并返回堆中与最小元素具有相同父节点的最小元素。
- 合并:将两个斐波那契堆合并成一个堆。
斐波那契堆通过减少堆的平衡调整次数来优化性能。在斐波那契堆中,插入和删除操作通常需要O(log n)的时间复杂度,而传统的二叉堆通常需要O(log n)的复杂度。
算法步骤
斐波那契堆排序的基本步骤如下:
- 初始化:创建一个空的斐波那契堆。
- 插入元素:将所有待排序的元素插入到斐波那契堆中。
- 删除最小元素:重复执行以下操作,直到堆中只剩下一个元素:
- 删除并返回堆中的最小元素。
- 将删除元素的后继节点(如果有)插入到堆中。
- 排序完成:最后剩下的元素是排序后的第一个元素。
伪代码描述
斐波那契堆排序(A)创建一个空的斐波那契堆对于每个元素x in A插入(斐波那契堆, x)while 斐波那契堆中元素数量 > 1删除并返回最小元素(斐波那契堆)将删除元素的后继节点插入(斐波那契堆)返回堆中剩下的元素
Python 代码实现
class FibonacciHeap:# internal node classclass Node:def __init__(self, key, value):self.key = keyself.value = valueself.parent = self.child = self.left = self.right = Noneself.degree = 0self.mark = False# function to iterate through a doubly linked listdef iterate(self, head):node = stop = headflag = Falsewhile True:if node == stop and flag is True:breakelif node == stop:flag = Trueyield nodenode = node.right# pointer to the head and minimum node in the root listroot_list, min_node = None, None# maintain total node count in full fibonacci heaptotal_nodes = 0# return min node in O(1) timedef find_min(self):return self.min_node# extract (delete) the min node from the heap in O(log n) time# amortized cost analysis can be found here (http://bit.ly/1ow1Clm)def extract_min(self):z = self.min_nodeif z is not None:if z.child is not None:# attach child nodes to root listchildren = [x for x in self.iterate(z.child)]for i in range(0, len(children)):self.merge_with_root_list(children[i])children[i].parent = Noneself.remove_from_root_list(z)# set new min node in heapif z == z.right:self.min_node = self.root_list = Noneelse:self.min_node = z.rightself.consolidate()self.total_nodes -= 1return z# insert new node into the unordered root list in O(1) time# returns the node so that it can be used for decrease_key laterdef insert(self, key, value=None):n = self.Node(key, value)n.left = n.right = nself.merge_with_root_list(n)if self.min_node is None or n.key < self.min_node.key:self.min_node = nself.total_nodes += 1return n# modify the key of some node in the heap in O(1) timedef decrease_key(self, x, k):if k > x.key:return Nonex.key = ky = x.parentif y is not None and x.key < y.key:self.cut(x, y)self.cascading_cut(y)if x.key < self.min_node.key:self.min_node = x# merge two fibonacci heaps in O(1) time by concatenating the root lists# the root of the new root list becomes equal to the first list and the second# list is simply appended to the end (then the proper min node is determined)def merge(self, h2):H = FibonacciHeap()H.root_list, H.min_node = self.root_list, self.min_node# fix pointers when merging the two heapslast = h2.root_list.lefth2.root_list.left = H.root_list.leftH.root_list.left.right = h2.root_listH.root_list.left = lastH.root_list.left.right = H.root_list# update min node if neededif h2.min_node.key < H.min_node.key:H.min_node = h2.min_node# update total nodesH.total_nodes = self.total_nodes + h2.total_nodesreturn H# if a child node becomes smaller than its parent node we# cut this child node off and bring it up to the root listdef cut(self, x, y):self.remove_from_child_list(y, x)y.degree -= 1self.merge_with_root_list(x)x.parent = Nonex.mark = False# cascading cut of parent node to obtain good time boundsdef cascading_cut(self, y):z = y.parentif z is not None:if y.mark is False:y.mark = Trueelse:self.cut(y, z)self.cascading_cut(z)# combine root nodes of equal degree to consolidate the heap# by creating a list of unordered binomial treesdef consolidate(self):A = [None] * int(math.log(self.total_nodes) * 2)nodes = [w for w in self.iterate(self.root_list)]for w in range(0, len(nodes)):x = nodes[w]d = x.degreewhile A[d] != None:y = A[d]if x.key > y.key:temp = xx, y = y, tempself.heap_link(y, x)A[d] = Noned += 1A[d] = x# find new min node - no need to reconstruct new root list below# because root list was iteratively changing as we were moving# nodes around in the above loopfor i in range(0, len(A)):if A[i] is not None:if A[i].key < self.min_node.key:self.min_node = A[i]# actual linking of one node to another in the root list# while also updating the child linked listdef heap_link(self, y, x):self.remove_from_root_list(y)y.left = y.right = yself.merge_with_child_list(x, y)x.degree += 1y.parent = xy.mark = False# merge a node with the doubly linked root listdef merge_with_root_list(self, node):if self.root_list is None:self.root_list = nodeelse:node.right = self.root_list.rightnode.left = self.root_listself.root_list.right.left = nodeself.root_list.right = node# merge a node with the doubly linked child list of a root nodedef merge_with_child_list(self, parent, node):if parent.child is None:parent.child = nodeelse:node.right = parent.child.rightnode.left = parent.childparent.child.right.left = nodeparent.child.right = node# remove a node from the doubly linked root listdef remove_from_root_list(self, node):if node == self.root_list:self.root_list = node.rightnode.left.right = node.rightnode.right.left = node.left# remove a node from the doubly linked child listdef remove_from_child_list(self, parent, node):if parent.child == parent.child.right:parent.child = Noneelif parent.child == node:parent.child = node.rightnode.right.parent = parentnode.left.right = node.rightnode.right.left = node.leftdef fibonacci_heap_sort(arr):heap = FibonacciHeap()for key in arr:heap.insert(key)sorted_arr = []while heap.total_nodes > 0:sorted_arr.append(heap.extract_min().key)return sorted_arr
C++模板代码实现
template <class V>
class FibonacciHeap;template <class V>
struct node
{
private:node<V> *prev;node<V> *next;node<V> *child;node<V> *parent;V value;int degree;bool marked;public:friend class FibonacciHeap<V>;node<V> *getPrev() { return prev; }node<V> *getNext() { return next; }node<V> *getChild() { return child; }node<V> *getParent() { return parent; }V getValue() { return value; }bool isMarked() { return marked; }bool hasChildren() { return child; }bool hasParent() { return parent; }
};template <class V>
class FibonacciHeap
{
protected:node<V> *heap;public:FibonacciHeap(){heap = _empty();}virtual ~FibonacciHeap(){if (heap){_deleteAll(heap);}}node<V> *insert(V value){node<V> *ret = _singleton(value);heap = _merge(heap, ret);return ret;}void merge(FibonacciHeap &other){heap = _merge(heap, other.heap);other.heap = _empty();}bool isEmpty(){return heap == nullptr;}V getMinimum(){return heap->value;}V removeMinimum(){node<V> *old = heap;heap = _removeMinimum(heap);V ret = old->value;delete old;return ret;}void decreaseKey(node<V> *n, V value){heap = _decreaseKey(heap, n, value);}node<V> *find(V value){return _find(heap, value);}private:node<V> *_empty(){return nullptr;}node<V> *_singleton(V value){node<V> *n = new node<V>;n->value = value;n->prev = n->next = n;n->degree = 0;n->marked = false;n->child = nullptr;n->parent = nullptr;return n;}node<V> *_merge(node<V> *a, node<V> *b){if (a == nullptr)return b;if (b == nullptr)return a;if (a->value > b->value){node<V> *temp = a;a = b;b = temp;}node<V> *an = a->next;node<V> *bp = b->prev;a->next = b;b->prev = a;an->prev = bp;bp->next = an;return a;}void _deleteAll(node<V> *n){if (n != nullptr){node<V> *c = n;do{node<V> *d = c;c = c->next;_deleteAll(d->child);delete d;} while (c != n);}}void _addChild(node<V> *parent, node<V> *child){child->prev = child->next = child;child->parent = parent;parent->degree++;parent->child = _merge(parent->child, child);}void _unMarkAndUnParentAll(node<V> *n){if (n == nullptr)return;node<V> *c = n;do{c->marked = false;c->parent = nullptr;c = c->next;} while (c != n);}node<V> *_removeMinimum(node<V> *n){_unMarkAndUnParentAll(n->child);if (n->next == n){n = n->child;}else{n->next->prev = n->prev;n->prev->next = n->next;n = _merge(n->next, n->child);}if (n == nullptr)return n;node<V> *trees[64] = {nullptr};while (true){if (trees[n->degree] != nullptr){node<V> *t = trees[n->degree];if (t == n)break;trees[n->degree] = nullptr;if (n->value < t->value){t->prev->next = t->next;t->next->prev = t->prev;_addChild(n, t);}else{t->prev->next = t->next;t->next->prev = t->prev;if (n->next == n){t->next = t->prev = t;_addChild(t, n);n = t;}else{n->prev->next = t;n->next->prev = t;t->next = n->next;t->prev = n->prev;_addChild(t, n);n = t;}}continue;}else{trees[n->degree] = n;}n = n->next;}node<V> *min = n;node<V> *start = n;do{if (n->value < min->value)min = n;n = n->next;} while (n != start);return min;}node<V> *_cut(node<V> *heap, node<V> *n){if (n->next == n){n->parent->child = nullptr;}else{n->next->prev = n->prev;n->prev->next = n->next;n->parent->child = n->next;}n->next = n->prev = n;n->marked = false;return _merge(heap, n);}node<V> *_decreaseKey(node<V> *heap, node<V> *n, V value){if (n->value < value)return heap;n->value = value;if (n->parent){if (n->value < n->parent->value){heap = _cut(heap, n);node<V> *parent = n->parent;n->parent = nullptr;while (parent != nullptr && parent->marked){heap = _cut(heap, parent);n = parent;parent = n->parent;n->parent = nullptr;}if (parent != nullptr && parent->parent != nullptr)parent->marked = true;}}else{if (n->value < heap->value){heap = n;}}return heap;}node<V> *_find(node<V> *heap, V value){node<V> *n = heap;if (n == nullptr)return nullptr;do{if (n->value == value)return n;node<V> *ret = _find(n->child, value);if (ret)return ret;n = n->next;} while (n != heap);return nullptr;}
};template <class T>
void FibonacciHeapSort(vector<T> &data)
{FibonacciHeap<T> heap;auto dataSize = data.size();for (auto i = 0; i < dataSize; i++)heap.insert(data[i]);for (auto i = 0; i < dataSize; i++)data[i] = heap.removeMinimum();
}
二叉堆排序
二叉堆排序是一种基于比较的排序算法,它利用二叉堆这种数据结构来进行排序。二叉堆是一种特殊的堆,它是一个近似完全二叉树,满足任一非叶子节点的值不大于或不小于其左右孩子节点的值。根据堆的这一特性,二叉堆分为最大堆和最小堆。在最大堆中,每个父节点的值都大于或等于其孩子节点的值;在最小堆中,每个父节点的值都小于或等于其孩子节点的值。
基本概念
- 二叉堆的性质:对于最大堆,每个父节点的值都大于或等于其孩子节点的值;对于最小堆,每个父节点的值都小于或等于其孩子节点的值。
- 堆的表示:通常使用数组来表示堆,对于任意节点i(假设数组从1开始索引),其左孩子为2i,右孩子为2i+1,父节点为i/2(向下取整)。
算法步骤
- 构建堆:将无序数组构造成一个最大堆(或最小堆)。
- 调整堆:将堆顶元素(最大或最小值)与数组末尾元素交换,然后调整堆,使其满足堆的性质。
- 重复调整:重复步骤2,直到堆中只剩下一个元素,此时数组已排序。
伪代码
二叉堆排序(array):构建最大堆(array)for i = length(array) downto 2:交换array[1]和array[i]调整堆(array, 1, i - 1)end for
end 二叉堆排序
构建最大堆(array):n = length(array)for i = n/2 downto 1:调整堆(array, i, n)end for
end 构建最大堆
调整堆(array, i, n):while 2*i <= n:j = 2*iif j + 1 <= n and array[j] < array[j + 1]:j = j + 1if array[i] < array[j]:交换array[i]和array[j]i = jelse:breakend while
end 调整堆
Python代码实现
class MaxHeap:def __init__(self):self.heap = []def parent(self, i):return (i - 1) // 2def left_child(self, i):return 2 * i + 1def right_child(self, i):return 2 * i + 2def has_left_child(self, i):return self.left_child(i) < len(self.heap)def has_right_child(self, i):return self.right_child(i) < len(self.heap)def swap(self, i, j):self.heap[i], self.heap[j] = self.heap[j], self.heap[i]def heapify_up(self, i):while i > 0 and self.heap[self.parent(i)] < self.heap[i]:self.swap(i, self.parent(i))i = self.parent(i)def heapify_down(self, i):largest = iif self.has_left_child(i) and self.heap[self.left_child(i)] > self.heap[largest]:largest = self.left_child(i)if self.has_right_child(i) and self.heap[self.right_child(i)] > self.heap[largest]:largest = self.right_child(i)if largest != i:self.swap(i, largest)self.heapify_down(largest)def insert(self, key):self.heap.append(key)self.heapify_up(len(self.heap) - 1)def extract_max(self):if len(self.heap) == 0:return Nonemax_value = self.heap[0]self.heap[0] = self.heap[-1]self.heap.pop()self.heapify_down(0)return max_valuedef build_heap(self, arr):self.heap = arr.copy()for i in range(len(self.heap) // 2, -1, -1):self.heapify_down(i)def is_empty(self):return len(self.heap) == 0def get_max(self):if self.is_empty():return Nonereturn self.heap[0]def __str__(self):return str(self.heap)def max_heap_sort(arr):max_heap = MaxHeap()max_heap.build_heap(arr)sorted_arr = []while not max_heap.is_empty():sorted_arr.append(max_heap.extract_max())return sorted_arr[::-1] # Reverse to get ascending order
C++模板实现
#include <iostream>
#include <vector>
#include <algorithm>template <typename T>
void maxHeapify(std::vector<T>& arr, int i, int n) {int left = 2 * i + 1;int right = 2 * i + 2;int largest = i;if (left < n && arr[left] > arr[largest]) {largest = left;}if (right < n && arr[right] > arr[largest]) {largest = right;}if (largest != i) {std::swap(arr[i], arr[largest]);maxHeapify(arr, largest, n);}
}template <typename T>
void heapSort(std::vector<T>& arr) {int n = arr.size();// Build max heapfor (int i = n / 2 - 1; i >= 0; i--) {maxHeapify(arr, i, n);}// Extract elements from heapfor (int i = n - 1; i >= 0; i--) {std::swap(arr[0], arr[i]);maxHeapify(arr, 0, i);}
}
这段代码首先定义了一个maxHeapify
函数,用于调整堆,使其满足最大堆的性质。然后定义了heapSort
函数,该函数首先构建一个最大堆,然后通过不断将堆顶元素与数组末尾元素交换并调整堆,实现了排序。最后在main
函数中测试了排序算法。
二叉堆实现
template <typename T>
class BinaryHeap
{
private:vector<T> heap;// 用于将新插入的元素上浮到正确位置void siftUp(int index){while (index > 0 && heap[(index - 1) / 2] < heap[index]){swap(heap[index], heap[(index - 1) / 2]);index = (index - 1) / 2;}}// 用于将堆顶元素下沉到正确位置void siftDown(int index){int left = 2 * index + 1;int right = 2 * index + 2;int largest = index;if (left < heap.size() && heap[left] > heap[largest]){largest = left;}if (right < heap.size() && heap[right] > heap[largest]){largest = right;}if (largest != index){swap(heap[index], heap[largest]);siftDown(largest);}}public:BinaryHeap() {}// 插入元素void insert(T value){heap.push_back(value);siftUp(heap.size() - 1);}// 删除堆顶元素void remove(){if (heap.empty()){return;}heap[0] = heap.back();heap.pop_back();if (!heap.empty()){siftDown(0);}}// 获取堆顶元素T peek() const{if (heap.empty()){throw out_of_range("Heap is empty");}return heap[0];}// 获取并删除顶元素T pop(){T value = peek();remove();return value;}// 判断堆是否为空bool isEmpty() const{return heap.empty();}// 输出堆中的元素void print() const{for (const auto &elem : heap){cout << elem << " ";}cout << endl;}
};template <class T>
void BinaryHeapSort(vector<T> &data)
{BinaryHeap<T> heap;auto dataSize = data.size();for (auto i = 0; i < dataSize; i++)heap.insert(data[i]);for (auto i = 0; i < dataSize; i++)data[i] = heap.pop();
}
完整的项目代码
Python 代码
import mathclass Person:def __init__(self, name, age, score):self.name = nameself.age = ageself.score = scoredef __lt__(self, other):return self.score < other.scoredef __le__(self, other):return self.score <= other.scoredef __eq__(self, other):return self.score == other.score and self.age == other.age and self.name == other.namedef __ne__(self, other):return not self.__eq__(other)def __gt__(self, other):return self.score > other.scoredef __ge__(self, other):return self.score >= other.scoredef get_name(self):return self.namedef get_age(self):return self.agedef get_score(self):return self.scoredef heapify(arr, n, i):largest = ileft = 2 * i + 1right = 2 * i + 2if left < n and arr[i] < arr[left]:largest = leftif right < n and arr[largest] < arr[right]:largest = rightif largest != i:arr[i], arr[largest] = arr[largest], arr[i]heapify(arr, n, largest)def heapsort(arr):n = len(arr)for i in range(n//2 - 1, -1, -1):heapify(arr, n, i)for i in range(n-1, 0, -1):arr[i], arr[0] = arr[0], arr[i]heapify(arr, i, 0)def test_heap_sort():data = [9, 8, 3, 7, 5, 6, 4, 1]heapsort(data)print(data)d_data = [9.9, 9.1, 3.3, 7.7, 5.5, 6.6, 4.4, 1.1]heapsort(d_data)print(d_data)c_data = ['a', 'c', 'b', 'd', 'e']heapsort(c_data)print(c_data)p_data = [Person("Alice", 20, 90), Person("Bob", 18, 85), Person("Charlie", 22, 95)]heapsort(p_data)for person in p_data:print(person.get_name(), person.get_age(), person.get_score())class MaxHeap:def __init__(self):self.heap = []def parent(self, i):return (i - 1) // 2def left_child(self, i):return 2 * i + 1def right_child(self, i):return 2 * i + 2def has_left_child(self, i):return self.left_child(i) < len(self.heap)def has_right_child(self, i):return self.right_child(i) < len(self.heap)def swap(self, i, j):self.heap[i], self.heap[j] = self.heap[j], self.heap[i]def heapify_up(self, i):while i > 0 and self.heap[self.parent(i)] < self.heap[i]:self.swap(i, self.parent(i))i = self.parent(i)def heapify_down(self, i):largest = iif self.has_left_child(i) and self.heap[self.left_child(i)] > self.heap[largest]:largest = self.left_child(i)if self.has_right_child(i) and self.heap[self.right_child(i)] > self.heap[largest]:largest = self.right_child(i)if largest != i:self.swap(i, largest)self.heapify_down(largest)def insert(self, key):self.heap.append(key)self.heapify_up(len(self.heap) - 1)def extract_max(self):if len(self.heap) == 0:return Nonemax_value = self.heap[0]self.heap[0] = self.heap[-1]self.heap.pop()self.heapify_down(0)return max_valuedef build_heap(self, arr):self.heap = arr.copy()for i in range(len(self.heap) // 2, -1, -1):self.heapify_down(i)def is_empty(self):return len(self.heap) == 0def get_max(self):if self.is_empty():return Nonereturn self.heap[0]def __str__(self):return str(self.heap)def max_heap_sort(arr):max_heap = MaxHeap()max_heap.build_heap(arr)sorted_arr = []while not max_heap.is_empty():sorted_arr.append(max_heap.extract_max())return sorted_arr[::-1] # Reverse to get ascending orderclass FibonacciHeap:# internal node classclass Node:def __init__(self, key, value):self.key = keyself.value = valueself.parent = self.child = self.left = self.right = Noneself.degree = 0self.mark = False# function to iterate through a doubly linked listdef iterate(self, head):node = stop = headflag = Falsewhile True:if node == stop and flag is True:breakelif node == stop:flag = Trueyield nodenode = node.right# pointer to the head and minimum node in the root listroot_list, min_node = None, None# maintain total node count in full fibonacci heaptotal_nodes = 0# return min node in O(1) timedef find_min(self):return self.min_node# extract (delete) the min node from the heap in O(log n) time# amortized cost analysis can be found here (http://bit.ly/1ow1Clm)def extract_min(self):z = self.min_nodeif z is not None:if z.child is not None:# attach child nodes to root listchildren = [x for x in self.iterate(z.child)]for i in range(0, len(children)):self.merge_with_root_list(children[i])children[i].parent = Noneself.remove_from_root_list(z)# set new min node in heapif z == z.right:self.min_node = self.root_list = Noneelse:self.min_node = z.rightself.consolidate()self.total_nodes -= 1return z# insert new node into the unordered root list in O(1) time# returns the node so that it can be used for decrease_key laterdef insert(self, key, value=None):n = self.Node(key, value)n.left = n.right = nself.merge_with_root_list(n)if self.min_node is None or n.key < self.min_node.key:self.min_node = nself.total_nodes += 1return n# modify the key of some node in the heap in O(1) timedef decrease_key(self, x, k):if k > x.key:return Nonex.key = ky = x.parentif y is not None and x.key < y.key:self.cut(x, y)self.cascading_cut(y)if x.key < self.min_node.key:self.min_node = x# merge two fibonacci heaps in O(1) time by concatenating the root lists# the root of the new root list becomes equal to the first list and the second# list is simply appended to the end (then the proper min node is determined)def merge(self, h2):H = FibonacciHeap()H.root_list, H.min_node = self.root_list, self.min_node# fix pointers when merging the two heapslast = h2.root_list.lefth2.root_list.left = H.root_list.leftH.root_list.left.right = h2.root_listH.root_list.left = lastH.root_list.left.right = H.root_list# update min node if neededif h2.min_node.key < H.min_node.key:H.min_node = h2.min_node# update total nodesH.total_nodes = self.total_nodes + h2.total_nodesreturn H# if a child node becomes smaller than its parent node we# cut this child node off and bring it up to the root listdef cut(self, x, y):self.remove_from_child_list(y, x)y.degree -= 1self.merge_with_root_list(x)x.parent = Nonex.mark = False# cascading cut of parent node to obtain good time boundsdef cascading_cut(self, y):z = y.parentif z is not None:if y.mark is False:y.mark = Trueelse:self.cut(y, z)self.cascading_cut(z)# combine root nodes of equal degree to consolidate the heap# by creating a list of unordered binomial treesdef consolidate(self):A = [None] * int(math.log(self.total_nodes) * 2)nodes = [w for w in self.iterate(self.root_list)]for w in range(0, len(nodes)):x = nodes[w]d = x.degreewhile A[d] != None:y = A[d]if x.key > y.key:temp = xx, y = y, tempself.heap_link(y, x)A[d] = Noned += 1A[d] = x# find new min node - no need to reconstruct new root list below# because root list was iteratively changing as we were moving# nodes around in the above loopfor i in range(0, len(A)):if A[i] is not None:if A[i].key < self.min_node.key:self.min_node = A[i]# actual linking of one node to another in the root list# while also updating the child linked listdef heap_link(self, y, x):self.remove_from_root_list(y)y.left = y.right = yself.merge_with_child_list(x, y)x.degree += 1y.parent = xy.mark = False# merge a node with the doubly linked root listdef merge_with_root_list(self, node):if self.root_list is None:self.root_list = nodeelse:node.right = self.root_list.rightnode.left = self.root_listself.root_list.right.left = nodeself.root_list.right = node# merge a node with the doubly linked child list of a root nodedef merge_with_child_list(self, parent, node):if parent.child is None:parent.child = nodeelse:node.right = parent.child.rightnode.left = parent.childparent.child.right.left = nodeparent.child.right = node# remove a node from the doubly linked root listdef remove_from_root_list(self, node):if node == self.root_list:self.root_list = node.rightnode.left.right = node.rightnode.right.left = node.left# remove a node from the doubly linked child listdef remove_from_child_list(self, parent, node):if parent.child == parent.child.right:parent.child = Noneelif parent.child == node:parent.child = node.rightnode.right.parent = parentnode.left.right = node.rightnode.right.left = node.leftdef fibonacci_heap_sort(arr):heap = FibonacciHeap()for key in arr:heap.insert(key)sorted_arr = []while heap.total_nodes > 0:sorted_arr.append(heap.extract_min().key)return sorted_arrdef test_max_heap_sort():data = [9, 8, 3, 7, 5, 6, 4, 1]max_heap_sort(data)print(data)d_data = [9.9, 9.1, 3.3, 7.7, 5.5, 6.6, 4.4, 1.1]max_heap_sort(d_data)print(d_data)c_data = ['a', 'c', 'b', 'd', 'e']max_heap_sort(c_data)print(c_data)p_data = [Person("Alice", 20, 90), Person("Bob", 18, 85), Person("Charlie", 22, 95)]max_heap_sort(p_data)for person in p_data:print(person.get_name(), person.get_age(), person.get_score())def test_fibonacci_heap_sort():data = [9, 8, 3, 7, 5, 6, 4, 1]fibonacci_heap_sort(data)print(data)d_data = [9.9, 9.1, 3.3, 7.7, 5.5, 6.6, 4.4, 1.1]fibonacci_heap_sort(d_data)print(d_data)c_data = ['a', 'c', 'b', 'd', 'e']fibonacci_heap_sort(c_data)print(c_data)p_data = [Person("Alice", 20, 90), Person("Bob", 18, 85), Person("Charlie", 22, 95)]fibonacci_heap_sort(p_data)for person in p_data:print(person.get_name(), person.get_age(), person.get_score())if __name__ == "__main__":test_heap_sort()test_max_heap_sort()test_fibonacci_heap_sort()
C++ 代码
#include <iostream>
#include <array>
#include <algorithm>
#include <vector>
#include <string>
#include <cmath>
#include <list>
#include <iterator>using namespace std;class Person
{
public:Person() = default;~Person() = default;Person(string name, int age, int score){this->name = name;this->age = age;this->socre = score;}// Override the operator> for other function to use.bool operator>(const Person &other) const{// Compare the socre of two Person objects.return this->socre > other.socre;}// Override the operator< for other function to use.bool operator<(const Person &other) const{// Compare the socre of two Person objects.return this->socre < other.socre;}// Override the operator== for other function to use.bool operator==(const Person &other) const{// Compare the socre, age and name of two Person objects.return this->socre == other.socre &&this->age == other.age &&this->name == other.name;}// Override the operator!= for other function to use.bool operator!=(const Person &other) const{// Compare the socre, age and name of two Person objects.return this->socre != other.socre ||this->age != other.age ||this->name != other.name;}// Override the operator<= for other fnction to use.bool operator<=(const Person &other) const{// Compare the socre, age and name of two Person objects.return this->socre <= other.socre &&this->age <= other.age &&this->name <= other.name;}// Override the operator>= for other function to use.bool operator>=(const Person &other) const{// Compare the socre, age and name of two Person objects.return this->socre >= other.socre &&this->age >= other.age &&this->name >= other.name;}// Now there are some get parameters function for this calss:const string &getName() const { return this->name; }int getAge() const { return this->age; }int getScore() const { return this->socre; }private:string name;int age;int socre;
};template <typename RandomAccessIterator>
void siftDown(RandomAccessIterator start, RandomAccessIterator end, RandomAccessIterator root)
{auto child = root;advance(child, distance(start, root) + 1);if (child < end){auto sibling = child;++sibling;if (sibling<end && * sibling> * child){child = sibling;}if (*child > *root){iter_swap(root, child);siftDown(start, end, child);}}
}template <typename RandomAccessIterator>
void makeHeap(RandomAccessIterator start, RandomAccessIterator end)
{if (start != end){auto length = distance(start, end);auto parent = start;advance(parent, (length - 2) / 2);while (true){siftDown(start, end, parent);if (parent == start)break;--parent;}}
}template <typename RandomAccessIterator>
void heapSort(RandomAccessIterator start, RandomAccessIterator end)
{makeHeap<RandomAccessIterator>(start, end);while (start != end){--end;iter_swap(start, end);siftDown(start, end, start);}
}void heapSortTestCase()
{vector<int> data = {9, 8, 3, 7, 5, 6, 4, 1};heapSort<vector<int>::iterator>(data.begin(), data.end());for (int i : data){cout << i << " ";}cout << endl;vector<double> dData = {9.9, 9.1, 3.3, 7.7, 5.5, 6.6, 4.4, 1.1};heapSort<vector<double>::iterator>(dData.begin(), dData.end());for (double i : dData){cout << i << " ";}cout << endl;vector<char> cData = {'a', 'c', 'b', 'd', 'e'};heapSort<vector<char>::iterator>(cData.begin(), cData.end());for (char i : cData){cout << i << " ";}cout << endl;vector<Person> pData = {Person("Alice", 20, 90), Person("Bob", 18, 85), Person("Charlie", 22, 95)};heapSort<vector<Person>::iterator>(pData.begin(), pData.end());for (Person i : pData){cout << i.getName() << " " << i.getAge() << " " << i.getScore() << endl;}cout << endl;
}template <typename T>
void maxHeapify(vector<T> &arr, int i, int n)
{int left = 2 * i + 1;int right = 2 * i + 2;int largest = i;if (left < n && arr[left] > arr[largest]){largest = left;}if (right < n && arr[right] > arr[largest]){largest = right;}if (largest != i){swap(arr[i], arr[largest]);maxHeapify(arr, largest, n);}
}template <typename T>
void binaryHeapSort(vector<T> &arr)
{int n = arr.size();// Build max heapfor (int i = n / 2 - 1; i >= 0; i--){maxHeapify(arr, i, n);}// Extract elements from heapfor (int i = n - 1; i >= 0; i--){swap(arr[0], arr[i]);maxHeapify(arr, 0, i);}
}void binaryHeapSortTestCase()
{vector<int> data = {9, 8, 3, 7, 5, 6, 4, 1};binaryHeapSort<int>(data);for (int i : data){cout << i << " ";}cout << endl;vector<double> dData = {9.9, 9.1, 3.3, 7.7, 5.5, 6.6, 4.4, 1.1};binaryHeapSort<double>(dData);for (double i : dData){cout << i << " ";}cout << endl;vector<char> cData = {'a', 'c', 'b', 'd', 'e'};binaryHeapSort<char>(cData);for (char i : cData){cout << i << " ";}cout << endl;vector<Person> pData = {Person("Alice", 20, 90), Person("Bob", 18, 85), Person("Charlie", 22, 95)};binaryHeapSort<Person>(pData);for (Person i : pData){cout << i.getName() << " " << i.getAge() << " " << i.getScore() << endl;}cout << endl;
}template <typename T>
class BinaryHeap
{
private:vector<T> heap;// 用于将新插入的元素上浮到正确位置void siftUp(int index){while (index > 0 && heap[(index - 1) / 2] < heap[index]){swap(heap[index], heap[(index - 1) / 2]);index = (index - 1) / 2;}}// 用于将堆顶元素下沉到正确位置void siftDown(int index){int left = 2 * index + 1;int right = 2 * index + 2;int largest = index;if (left < heap.size() && heap[left] > heap[largest]){largest = left;}if (right < heap.size() && heap[right] > heap[largest]){largest = right;}if (largest != index){swap(heap[index], heap[largest]);siftDown(largest);}}public:BinaryHeap() {}// 插入元素void insert(T value){heap.push_back(value);siftUp(heap.size() - 1);}// 删除堆顶元素void remove(){if (heap.empty()){return;}heap[0] = heap.back();heap.pop_back();if (!heap.empty()){siftDown(0);}}// 获取堆顶元素T peek() const{if (heap.empty()){throw out_of_range("Heap is empty");}return heap[0];}// 获取并删除顶元素T pop(){T value = peek();remove();return value;}// 判断堆是否为空bool isEmpty() const{return heap.empty();}// 输出堆中的元素void print() const{for (const auto &elem : heap){cout << elem << " ";}cout << endl;}
};template <class T>
void BinaryHeapSort(vector<T> &data)
{BinaryHeap<T> heap;auto dataSize = data.size();for (auto i = 0; i < dataSize; i++)heap.insert(data[i]);for (auto i = 0; i < dataSize; i++)data[i] = heap.pop();
}void BinaryHeapUnitTest()
{BinaryHeap<int> maxHeap;maxHeap.insert(10);maxHeap.insert(20);maxHeap.insert(15);maxHeap.insert(17);maxHeap.insert(25);maxHeap.print(); // 应该输出 25 20 15 17 10cout << "Peek: " << maxHeap.peek() << endl; // 应该输出 25maxHeap.remove();maxHeap.print(); // 应该输出 20 17 15 10
}void BinaryHeapSortTestCase()
{vector<int> data = {9, 8, 3, 7, 5, 6, 4, 1};BinaryHeapSort<int>(data);for (int i : data){cout << i << " ";}cout << endl;vector<double> dData = {9.9, 9.1, 3.3, 7.7, 5.5, 6.6, 4.4, 1.1};BinaryHeapSort<double>(dData);for (double i : dData){cout << i << " ";}cout << endl;vector<char> cData = {'a', 'c', 'b', 'd', 'e'};BinaryHeapSort<char>(cData);for (char i : cData){cout << i << " ";}cout << endl;vector<Person> pData = {Person("Alice", 20, 90), Person("Bob", 18, 85), Person("Charlie", 22, 95)};BinaryHeapSort<Person>(pData);for (Person i : pData){cout << i.getName() << " " << i.getAge() << " " << i.getScore() << endl;}cout << endl;
}template <class V>
class FibonacciHeap;template <class V>
struct node
{
private:node<V> *prev;node<V> *next;node<V> *child;node<V> *parent;V value;int degree;bool marked;public:friend class FibonacciHeap<V>;node<V> *getPrev() { return prev; }node<V> *getNext() { return next; }node<V> *getChild() { return child; }node<V> *getParent() { return parent; }V getValue() { return value; }bool isMarked() { return marked; }bool hasChildren() { return child; }bool hasParent() { return parent; }
};template <class V>
class FibonacciHeap
{
protected:node<V> *heap;public:FibonacciHeap(){heap = _empty();}virtual ~FibonacciHeap(){if (heap){_deleteAll(heap);}}node<V> *insert(V value){node<V> *ret = _singleton(value);heap = _merge(heap, ret);return ret;}void merge(FibonacciHeap &other){heap = _merge(heap, other.heap);other.heap = _empty();}bool isEmpty(){return heap == nullptr;}V getMinimum(){return heap->value;}V removeMinimum(){node<V> *old = heap;heap = _removeMinimum(heap);V ret = old->value;delete old;return ret;}void decreaseKey(node<V> *n, V value){heap = _decreaseKey(heap, n, value);}node<V> *find(V value){return _find(heap, value);}private:node<V> *_empty(){return nullptr;}node<V> *_singleton(V value){node<V> *n = new node<V>;n->value = value;n->prev = n->next = n;n->degree = 0;n->marked = false;n->child = nullptr;n->parent = nullptr;return n;}node<V> *_merge(node<V> *a, node<V> *b){if (a == nullptr)return b;if (b == nullptr)return a;if (a->value > b->value){node<V> *temp = a;a = b;b = temp;}node<V> *an = a->next;node<V> *bp = b->prev;a->next = b;b->prev = a;an->prev = bp;bp->next = an;return a;}void _deleteAll(node<V> *n){if (n != nullptr){node<V> *c = n;do{node<V> *d = c;c = c->next;_deleteAll(d->child);delete d;} while (c != n);}}void _addChild(node<V> *parent, node<V> *child){child->prev = child->next = child;child->parent = parent;parent->degree++;parent->child = _merge(parent->child, child);}void _unMarkAndUnParentAll(node<V> *n){if (n == nullptr)return;node<V> *c = n;do{c->marked = false;c->parent = nullptr;c = c->next;} while (c != n);}node<V> *_removeMinimum(node<V> *n){_unMarkAndUnParentAll(n->child);if (n->next == n){n = n->child;}else{n->next->prev = n->prev;n->prev->next = n->next;n = _merge(n->next, n->child);}if (n == nullptr)return n;node<V> *trees[64] = {nullptr};while (true){if (trees[n->degree] != nullptr){node<V> *t = trees[n->degree];if (t == n)break;trees[n->degree] = nullptr;if (n->value < t->value){t->prev->next = t->next;t->next->prev = t->prev;_addChild(n, t);}else{t->prev->next = t->next;t->next->prev = t->prev;if (n->next == n){t->next = t->prev = t;_addChild(t, n);n = t;}else{n->prev->next = t;n->next->prev = t;t->next = n->next;t->prev = n->prev;_addChild(t, n);n = t;}}continue;}else{trees[n->degree] = n;}n = n->next;}node<V> *min = n;node<V> *start = n;do{if (n->value < min->value)min = n;n = n->next;} while (n != start);return min;}node<V> *_cut(node<V> *heap, node<V> *n){if (n->next == n){n->parent->child = nullptr;}else{n->next->prev = n->prev;n->prev->next = n->next;n->parent->child = n->next;}n->next = n->prev = n;n->marked = false;return _merge(heap, n);}node<V> *_decreaseKey(node<V> *heap, node<V> *n, V value){if (n->value < value)return heap;n->value = value;if (n->parent){if (n->value < n->parent->value){heap = _cut(heap, n);node<V> *parent = n->parent;n->parent = nullptr;while (parent != nullptr && parent->marked){heap = _cut(heap, parent);n = parent;parent = n->parent;n->parent = nullptr;}if (parent != nullptr && parent->parent != nullptr)parent->marked = true;}}else{if (n->value < heap->value){heap = n;}}return heap;}node<V> *_find(node<V> *heap, V value){node<V> *n = heap;if (n == nullptr)return nullptr;do{if (n->value == value)return n;node<V> *ret = _find(n->child, value);if (ret)return ret;n = n->next;} while (n != heap);return nullptr;}
};class DotFibonacciHeap : public FibonacciHeap<int>
{
public:void dump(){printf("digraph G {\n");if (heap == nullptr){printf("empty;\n}\n");return;}printf("minimum -> \"%p\" [constraint=false];\n", heap);node<int> *c = heap;do{_dumpChildren(c);c = c->getNext();} while (c != heap);printf("}\n");}private:void _dumpChildren(node<int> *n){printf("\"%p\" -> \"%p\" [constraint=false,arrowhead=lnormal];\n", n, n->getNext());printf("\"%p\" -> \"%p\" [constraint=false,arrowhead=ornormal];\n", n, n->getPrev());if (n->isMarked())printf("\"%p\" [style=filled,fillcolor=grey];\n", n);if (n->hasParent()){printf("\"%p\" -> \"%p\" [constraint=false,arrowhead=onormal];\n", n, n->getParent());}printf("\"%p\" [label=%d];\n", n, n->getValue());if (n->hasChildren()){node<int> *c = n->getChild();do{printf("\"%p\" -> \"%p\";\n", n, c);_dumpChildren(c);c = c->getNext();} while (c != n->getChild());}}
};void DotFibonacciHeapUnitTest()
{DotFibonacciHeap h;h.insert(2);h.insert(3);h.insert(1);h.insert(4);h.removeMinimum();h.removeMinimum();h.insert(5);h.insert(7);h.removeMinimum();h.insert(2);node<int> *nine = h.insert(90);h.removeMinimum();h.removeMinimum();h.removeMinimum();for (int i = 0; i < 20; i += 2)h.insert(30 - i);for (int i = 0; i < 4; i++)h.removeMinimum();for (int i = 0; i < 20; i += 2)h.insert(30 - i);h.insert(23);for (int i = 0; i < 7; i++)h.removeMinimum();h.decreaseKey(nine, 1);h.decreaseKey(h.find(28), 2);h.decreaseKey(h.find(23), 3);h.dump();
}template <class T>
void FibonacciHeapSort(vector<T> &data)
{FibonacciHeap<T> heap;auto dataSize = data.size();for (auto i = 0; i < dataSize; i++)heap.insert(data[i]);for (auto i = 0; i < dataSize; i++)data[i] = heap.removeMinimum();
}void FibonacciHeapSortTestCase()
{vector<int> data = {9, 8, 3, 7, 5, 6, 4, 1};FibonacciHeapSort<int>(data);for (int i : data){cout << i << " ";}cout << endl;vector<double> dData = {9.9, 9.1, 3.3, 7.7, 5.5, 6.6, 4.4, 1.1};FibonacciHeapSort<double>(dData);for (double i : dData){cout << i << " ";}cout << endl;vector<char> cData = {'a', 'c', 'b', 'd', 'e'};FibonacciHeapSort<char>(cData);for (char i : cData){cout << i << " ";}cout << endl;vector<Person> pData = {Person("Alice", 20, 90), Person("Bob", 18, 85), Person("Charlie", 22, 95)};FibonacciHeapSort<Person>(pData);for (Person i : pData){cout << i.getName() << " " << i.getAge() << " " << i.getScore() << endl;}cout << endl;
}int main()
{cout << "Heap Sort Case:" << endl;heapSortTestCase();cout << "Binary Heap Sort Case Without DataStructure:" << endl;binaryHeapSortTestCase();cout << "Binary Heap Sort Case With DataStructure:" << endl;BinaryHeapUnitTest();BinaryHeapSortTestCase();cout << "Fibonacci Heap Sort Case:" << endl;DotFibonacciHeapUnitTest();FibonacciHeapSortTestCase();return 0;
}
个人格言
追寻与内心共鸣的生活,未来会逐渐揭晓答案。
Pursue the life that resonates with your heart, and the future will gradually reveal the answer.