算法沉淀——动态规划之路径问题(leetcode真题剖析)

在这里插入图片描述

算法沉淀——动态规划之路径问题

  • 01.不同路径
  • 02.不同路径 II
  • 03.珠宝的最高价值
  • 04.下降路径最小和
  • 05.最小路径和
  • 06.地下城游戏

01.不同路径

题目链接:https://leetcode.cn/problems/unique-paths/

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28

示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下

示例 3:

输入:m = 7, n = 3
输出:28

示例 4:

输入:m = 3, n = 3
输出:6

提示:

  • 1 <= m, n <= 100
  • 题目数据保证答案小于等于 2 * 109

思路

这是一个典型的动态规划问题。以下是解题的一般步骤:

  1. 状态表示: 对于路径类问题,有两种状态表示方式,选择其中之一。这里选择从起始位置出发,到达 [i, j] 位置的方式:

    dp[i][j] 表示从起始位置到达 [i, j] 位置的路径数。

  2. 状态转移方程: 分析从 [i, j] 位置出发的一小步,有两种情况:

    • [i-1, j] 位置向下走一步,转移到 [i, j] 位置;
    • [i, j-1] 位置向右走一步,转移到 [i, j] 位置。

    因此,状态转移方程为:dp[i][j] = dp[i-1][j] + dp[i][j-1]

  3. 初始化:dp 数组前添加一行和一列,初始化 dp[0][1] 位置为 1

  4. 填表顺序: 从上往下,每一行从左往右填写。

  5. 返回值: 返回 dp[m][n] 的值,表示从起始位置到达终点位置的路径数。

代码

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> dp(m+1,vector<int>(n+1,0));dp[1][1]=1;for(int i=1;i<=m;i++){for(int j=1;j<=n;j++){if(i==1&&j==1) continue;dp[i][j]=dp[i-1][j]+dp[i][j-1];}}return dp[m][n];}
};

02.不同路径 II

题目链接:https://leetcode.cn/problems/unique-paths-ii/

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1 

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j]01

思路

根据上题分析,这题如果某个位置 [i - 1, j] 或者 [i, j - 1] 上存在障碍物,说明从这两个位置到达 [i, j] 的路径是被阻挡的,因此在计算 dp[i][j](表示从起点到达 [i, j] 的路径数)时,可以直接将 dp[i][j] 设为零,其余同上题。

代码

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int m=obstacleGrid.size(),n=obstacleGrid[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,0));dp[1][0]=1;for(int i=1;i<=m;++i)for(int j=1;j<=n;++j)if(obstacleGrid[i-1][j-1]==0)dp[i][j]=dp[i-1][j]+dp[i][j-1];return dp[m][n];}
};

03.珠宝的最高价值

题目链接:https://leetcode.cn/problems/li-wu-de-zui-da-jie-zhi-lcof/

现有一个记作二维矩阵 frame 的珠宝架,其中 frame[i][j] 为该位置珠宝的价值。拿取珠宝的规则为:

  • 只能从架子的左上角开始拿珠宝
  • 每次可以移动到右侧或下侧的相邻位置
  • 到达珠宝架子的右下角时,停止拿取

注意:珠宝的价值都是大于 0 的。除非这个架子上没有任何珠宝,比如 frame = [[0]]

示例 1:

输入: frame = [[1,3,1],[1,5,1],[4,2,1]]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最高价值的珠宝

提示:

  • 0 < frame.length <= 200
  • 0 < frame[0].length <= 200

思路

在处理这类问题时,动态规划的状态表可以采用两种主要形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示从起始位置到达 [i, j] 位置时的最大价值。在考虑到达 [i, j] 的两种方式时,即从上方 [i - 1, j] 或从左侧 [i, j - 1] 到达,我们需要选择其中最大价值的路径。因此,状态转移方程为:

dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];

在初始化过程中,可以添加一个辅助结点,并将所有值初始化为零。填表的顺序是从上往下逐行填写,每一行从左往右。最后,我们应该返回 dp[m][n] 的值,表示在整个网格中的最大价值。

代码

class Solution {
public:int jewelleryValue(vector<vector<int>>& frame) {int m=frame.size(),n=frame[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,0));for(int i=1;i<=m;++i)for(int j=1;j<=n;++j)dp[i][j]=max(dp[i-1][j],dp[i][j-1])+frame[i-1][j-1];return dp[m][n];}
};

04.下降路径最小和

题目链接:https://leetcode.cn/problems/minimum-falling-path-sum/

给你一个 n x n方形 整数数组 matrix ,请你找出并返回通过 matrix下降路径最小和

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)(row + 1, col) 或者 (row + 1, col + 1)

示例 1:

输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径

示例 2:

输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径

提示:

  • n == matrix.length == matrix[i].length
  • 1 <= n <= 100
  • -100 <= matrix[i][j] <= 100

在处理这种「路径类」的问题时,动态规划的状态表一般有两种常见形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示到达 [i, j] 位置时,所有下降路径中的最小和。在考虑到达 [i, j] 的三种方式时,即从正上方 [i - 1, j]、左上方 [i - 1, j - 1] 和右上方 [i - 1, j + 1] 转移到 [i, j] 位置,我们需要选择三者中的最小值,再加上矩阵在 [i, j] 位置的值。因此,状态转移方程为:

dp[i][j]=matrix[i-1][j-1]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]));

在初始化过程中,我们添加一个辅助结点,将其值初始化为正无穷大,以保证后续填表时是正确的。同时,需要注意下标的映射关系。在本题中,我们添加了一行和两列,将第一行的值初始化为 0。填表的顺序是从上往下逐行填写。最后,我们不是返回 dp[m][n] 的值,而是返回 dp 表中最后一行的最小值,因为题目要求只要到达最后一行即可。

代码

class Solution {
public:int minFallingPathSum(vector<vector<int>>& matrix) {int m=matrix.size(),n=matrix[0].size();vector<vector<int>> dp(n+1,vector<int>(n+2,INT_MAX));for(int i=0;i<n+2;i++) dp[0][i]=0;for(int i=1;i<=n;i++)for(int j=1;j<=n;j++)dp[i][j]=matrix[i-1][j-1]+min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]));int ret=INT_MAX;for(int i=1;i<=n;i++)ret=min(ret,dp[n][i]);return ret;}
};

05.最小路径和

题目链接:https://leetcode.cn/problems/minimum-path-sum/

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步。

示例 1:

输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。

示例 2:

输入:grid = [[1,2,3],[4,5,6]]
输出:12

提示:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 200
  • 0 <= grid[i][j] <= 200

思路

在处理这种路径类问题时,我们通常选择两种状态表现形式:一是从某个位置出发,描述到达其他位置的情况;二是从起始位置到达某个位置,描述达到该位置时的状态。在这里,我们选择第二种方式定义状态表:

我们使用 dp[i][j] 表示到达 [i, j] 位置处的最小路径和。在分析 dp[i][j] 的情况时,我们考虑到达 [i, j] 位置之前的一小步有两种情况:一是从上方 [i - 1, j] 向下走一步,转移到 [i, j] 位置;二是从左方 [i, j - 1] 向右走一步,转移到 [i, j] 位置。由于我们要找的是最小路径,因此只需要这两种情况下的最小值,再加上 [i, j] 位置上本身的值即可。

也就是说,状态转移方程为:dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];

在初始化过程中,我们可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧需要注意两个点:一是辅助结点里面的值要保证后续填表是正确的;二是下标的映射关系。在本题中,添加了一行和一列,所有位置的值可以初始化为无穷大,然后让 dp[0][1] = dp[1][0] = 1 即可。

填表的顺序是从上往下逐行填写,每一行从左往右。最后,我们返回 dp 表中最后一个位置的值,即 dp[m][n]

代码

class Solution {
public:int minPathSum(vector<vector<int>>& grid) {int m=grid.size(),n=grid[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));dp[0][1]=dp[1][0]=0;for(int i=1;i<=m;i++)for(int j=1;j<=n;j++)dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i-1][j-1];return dp[m][n];}
};

06.地下城游戏

题目链接:https://leetcode.cn/problems/dungeon-game/

恶魔们抓住了公主并将她关在了地下城 dungeon右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里,他必须穿过地下城并通过对抗恶魔来拯救公主。

骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻降至 0 或以下,他会立即死亡。

有些房间由恶魔守卫,因此骑士在进入这些房间时会失去健康点数(若房间里的值为负整数,则表示骑士将损失健康点数);其他房间要么是空的(房间里的值为 0),要么包含增加骑士健康点数的魔法球(若房间里的值为正整数,则表示骑士将增加健康点数)。

为了尽快解救公主,骑士决定每次只 向右向下 移动一步。

返回确保骑士能够拯救到公主所需的最低初始健康点数。

**注意:**任何房间都可能对骑士的健康点数造成威胁,也可能增加骑士的健康点数,包括骑士进入的左上角房间以及公主被监禁的右下角房间。

示例 1:

输入:dungeon = [[-2,-3,3],[-5,-10,1],[10,30,-5]]
输出:7
解释:如果骑士遵循最佳路径:右 -> 右 -> 下 -> 下 ,则骑士的初始健康点数至少为 7 。

示例 2:

输入:dungeon = [[0]]
输出:1 

提示:

  • m == dungeon.length
  • n == dungeon[i].length
  • 1 <= m, n <= 200
  • -1000 <= dungeon[i][j] <= 1000

思路

这道题可以通过动态规划求解,首先需要定义状态表现形式。如果我们定义为“从起点开始,到达 [i, j] 位置的时候,所需的最低初始健康点数”,分析状态转移时可能会受到后续路径的影响。因此,更合适的状态表现形式是“从 [i, j] 位置出发,到达终点时所需要的最低初始健康点数”。

综上,我们定义状态表达为:dp[i][j]表示:从 [i, j] 位置出发,到达终点时所需的最低初始健康点数。

在状态转移方程中,我们考虑从 [i, j] 位置出发的两种选择: i. 向右走到终点,即从 [i, j] 到 [i, j + 1]; ii. 向下走到终点,即从 [i, j] 到 [i + 1, j]。

对于这两种选择,我们需要选择使得到达终点时的初始健康点数最小的路径。因此,状态转移方程为: dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];

然而,由于 dungeon[i][j] 可能是一个较大的正数,计算得到的dp[i][j]的值可能会小于等于 0。如果初始健康点数小于等于 0,马上死亡,因此我们需要处理这种情况,将 dp[i][j] 与 1 取最大值:dp[i][j]=max(1,dp[i][j]);

在初始化阶段,我们在最前面加上一个“辅助结点”来帮助初始化,需要注意辅助结点里面的值要保证后续填表是正确的,以及下标的映射关系。在本题中,我们在 dp 表的最后一行和最后一列分别添加一行和一列,将所有的值初始化为无穷大,然后让 dp[m][n - 1] = dp[m - 1][n] = 1

填表的顺序是从下往上逐行填写,每一行从右往左。最后,我们返回 dp[0][0] 的值。

代码

class Solution {
public:int calculateMinimumHP(vector<vector<int>>& dungeon) {int m=dungeon.size(),n=dungeon[0].size();vector<vector<int>> dp(m+1,vector<int>(n+1,INT_MAX));dp[m][n-1]=dp[m-1][n]=1;for(int i=m-1;i>=0;i--)for(int j=n-1;j>=0;j--){dp[i][j]=min(dp[i+1][j],dp[i][j+1])-dungeon[i][j];dp[i][j]=max(1,dp[i][j]);}return dp[0][0];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/703865.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringMVC 学习(七)之报文信息转换器 HttpMessageConverter

目录 1 HttpMessageConverter 介绍 2 RequestBody 注解 3 ResponseBody 注解 4 RequestEntity 5 ResponseEntity 6 RestController 注解 1 HttpMessageConverter 介绍 HttpMessageConverter 报文信息转换器&#xff0c;将请求报文&#xff08;如JSON、XML、HTML等&#x…

【HarmonyOS】鸿蒙开发之Stage模型-应用配置文件——第4.2章

Stage模型-应用配置文件 AppScope -> app.json5&#xff1a;应用的全局配置信息entry&#xff1a;OpenHarmony工程模块&#xff0c;编译构建生成一个HAP包 build&#xff1a;用于存放OpenHarmony编译生成的hap包src -> main -> ets&#xff1a;用于存放ArkTS源码src …

每日一题——LeetCode1512.好数对的数目

方法一 暴力循环 var numIdenticalPairs function(nums) {let ans 0;for (let i 0; i < nums.length; i) {for (let j i 1; j < nums.length; j) {if (nums[i] nums[j]) {ans;}}}return ans; }; 消耗时间和内存情况&#xff1a; 方法二&#xff1a;组合计数 var …

msvcr110.dll找不到怎么修复?多种解决msvcr110.dll缺失方法分析

面对如“程序无法启动&#xff0c;因为电脑中缺失msvcr110.dll”这样的错误提示时&#xff0c;你的日常工作或游戏娱乐很可能会被迫暂停。这种问题在Windows用户中相当普遍&#xff0c;它们来源于某些共享的系统文件缺失。不过&#xff0c;好消息是解决此类错误通常并非困难任务…

SpringCloud Alibaba 2022之Nacos学习

SpringCloud Alibaba 2022使用 SpringCloud Alibaba 2022需要Spring Boot 3.0以上的版本&#xff0c;同时JDK需要是17及以上的版本。具体的可以看官网的说明。 Spring Cloud Alibaba版本说明 环境搭建 这里搭建的是一个聚合项目。项目结构如下&#xff1a; 父项目的pom.xm…

Springboot--整合定时任务quartz--集群篇

文章目录 前言一、quartz 的集群&#xff1a;1.1 服务集群带来的定时任务问题&#xff1a;1.2 服务集群定时任务解决思路&#xff1a; 二、quartz 集群实现&#xff1a;2.1 引入jar2.2 配置文件&#xff1a;2.3 定义quartz 数据源&#xff1a;2.4 集群测试&#xff1a;2.4.1 定…

【管理咨询宝藏资料25】某能源集团五年发展战略报告

本报告首发于公号“管理咨询宝藏”&#xff0c;如需阅读完整版报告内容&#xff0c;请查阅公号“管理咨询宝藏”。 【管理咨询宝藏资料25】某能源集团五年发展战略报告 【关键词】战略规划、五年战略、管理咨询 【文件核心观点】 - LL应以快速做大做强为目标&#xff0c;专注…

百能正式加入星闪联盟,助力无线通信技术发展

星闪联盟于2020年9月22日正式成立&#xff0c;是一个由国家级标准研究机构、行业领军企业、产业链合作伙伴等组成的开放式合作平台。该联盟致力于推动新一代无线短距通信技术SparkLink的创新和产业生态发展&#xff0c;以满足智能汽车、智能家居、智能终端和智能制造等快速发展…

Escalate_Linux-环境变量劫持提权(5)

环境变量劫持提权 在Shll输入命令时&#xff0c;Shel会按PAH环境变量中的路径依次搜索命令&#xff0c;若是存在同名的命令&#xff0c;则执行最先找到的&#xff0c;若是PATH中加入了当前目录&#xff0c;也就是“”这个符号&#xff0c;则可能会被黑客利用&#xff0c;例如在…

linux操作系统期末练习题

背景&#xff1a; 一、远程登录 1&#xff0e;利用远程登录软件&#xff0c;以用户userManager(密码123456)&#xff0c;远程登录教师计算机&#xff08;考试现场给出IP地址&#xff09;&#xff0c;只有操作&#xff0c;没有命令。 2&#xff0e;以stu班级学生个人学号后3位…

Webserver解决segmentation fault(core dump)段错问问题

前言 在完成了整个项目后&#xff0c;我用make命令编译了server&#xff0c;当我运行./server文件时&#xff0c;出现了段错误 在大量的代码中找出错因并不是一件容易的事&#xff0c;尤其是对新手程序员来说。而寻找bug的过程就像是侦探调查线索追查凶手一样&#xff0c;我们…

【软件测试】--功能测试2--常用设计测试用例方法

一、解决穷举场景 重点&#xff1a;使用等价类划分法 1.1 等价类划分法 重点&#xff1a;有效等价和单个无效等价各取1个即可。 步骤&#xff1a;1、明确需求2、确定有效和无效等价3、根据有效和无效造数据编写用例 1.2 案例&#xff08;qq合法验证&#xff09; 需求&#xff…

vue中循环多个li(表格)并获取对应的ref

有种场景是这样的 <ul><li v-for"(item,index) in data" :key"index" ref"???">{{item}}</li> </ul> //key值在项目中别直接用index&#xff0c;最好用id或其它关键值const data [1,2,3,4,5,6]我想要获取每一个循环并…

外包干了3个月,技术倒退明显...

先说情况&#xff0c;大专毕业&#xff0c;18年通过校招进入湖南某软件公司&#xff0c;干了接近6年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测试&#xf…

嵌入式Qt 实现用户界面与业务逻辑分离

一.基本程序框架一般包含 二.框架的基本设计原则 三.用户界面与业务逻辑的交互 四.代码实现计算器用户界面与业务逻辑 ICalculator.h #ifndef _ICALCULATOR_H_ #define _ICALCULATOR_H_#include <QString>class ICalculator { public:virtual bool expression(const QSt…

人脸2D和3D道具SDK解决方案提供商

人脸识别和增强现实技术成为了许多企业和开发者关注的焦点&#xff0c;为了满足市场对高质量、易于集成的人脸识别SDK的需求&#xff0c;美摄科技推出了一系列领先的人脸2D/3D道具SDK解决方案。 一、产品特点 高精度识别&#xff1a;美摄科技的人脸识别技术采用深度学习算法&…

C++——二叉搜索树

二叉搜索树 二叉搜索树&#xff1a; 又为搜索二叉树&#xff0c;一般具有以下的性质 若它的左子树不为空&#xff0c;则左子树上所有的节点的值都小于父亲节点若它的右子树不为空&#xff0c;则右子树上所有的节点的值都大于父亲节点它的左右子树也都为二叉搜索树 二叉搜索树…

漏电保护继电器 导轨安装 零序电流互感器配套使用DJ-ZB1 DH-30L

系列型号&#xff1a; DJ-ZB1剩余&#xff08;漏电&#xff09;电流保护继电器 DJ-ZB2剩余&#xff08;漏电&#xff09;电流保护继电器 DJ-ZB3剩余&#xff08;漏电&#xff09;电流保护继电器 DJ-ZB4剩余&#xff08;漏电&#xff09;电流保护继电器 DJ-ZB5剩余&#xff08;漏…

pytorch保存张量为图片

这里用到的是torchvision中的save_image。 废话不多说&#xff0c;直接来代码&#xff1a; import torch from torchvision.utils import save_image B, C, H, W 64, 3, 32, 32 input_tensor torch.randn(B, C, H, W) save_image(input_tensor, "hh.png", nrow8)…

Shell脚本入门:从基础到实践,轻松掌握Shell编程

前言 在数字化和信息化的今天&#xff0c;计算机和操作系统成为了我们生活和工作中不可或缺的一部分。对于经常使用计算机的人来说&#xff0c;Shell&#xff08;命令行界面&#xff09;是一个非常重要的工具。而Shell脚本&#xff0c;则是对命令行操作的一种自动化和批量化处…