2023年数维杯数学建模A题河流-地下水系统水体污染研求解全过程文档及程序

2023年数维杯数学建模

A题 河流-地下水系统水体污染研

原题再现:

  河流对地下水有着直接地影响,当河流补给地下水时,河流一旦被污染,容易导致地下水以及紧依河流分布的傍河水源地将受到不同程度的污染,这将严重影响工农业的正常运作、社会经济的发展和饮水安全。在地下水污染中最难治理和危害最大的是有机污染,因而对有机污染物在河流-地下水系统中的行为特征进行研究具有十分重要的理论意义和实际价值。另外,已有研究表明在河流地下水系统中有机污染物的行为特征主要涉及对流迁移、水动力弥散、吸附及阻滞等物理过程、化学反应过程以及生物转化过程等。现设地下水渗流场为各向同性均质的稳态流,对有机污染物的迁移和转化规律进行研究和探索,并完成以下问题。
  问题1 通过查阅相关文献和资料,分析并建立河流-地下水系统中有机污染物的对流、弥散及吸附作用的数学模型 。
  问题2 试利用下面介绍的内容和表中试验参数以及数据依据数学模型研究某有机污染物在河流-地下水系统中的迁移转化机理。
  1) 对流、弥散试验参数
  通过试验测得河流-地下水系统中某有机污染物的对流、弥散有关参数见表1。
在这里插入图片描述
  2)吸附动力学试验结果
  四种不同河流沉积物对初始浓度为0.5mg/L左右的某有机污染物吸附体系的吸附动力学过程及不同吸附时间测得固、液相某有机物的浓度列于表2中.

在这里插入图片描述
  3)等温平衡吸附试验结果
  地下水中有机污染物的吸附行为采用等温平衡吸附的数学模型描述,四种不同沉积物对10种不同初始浓度的某有机污染物24小时的等温平衡吸附试验结果列于表3中.
在这里插入图片描述
  问题3 生物降解是污染物一个很重要的转化过程,考虑生物降解作用对有机污染物转化的影响,建立适当的数学模型,试结合表4中的试验数据分析微生物对该有机污染物的降解特性。
在这里插入图片描述

整体求解过程概述(摘要)

  党的二十大报告指出,“深入推进环境污染防治,统筹水资源、水环境、水生态治理,推动重要江河湖库生态保护治理,基本消除城市黑臭水体”。其中河流和地下水系统在人类生活中发挥关键作用。当污染发生时,河流对地下水的补给可能导致周边水源受污,影响工农业运作、社会发展及饮水安全。在地下水污染中,有机污染物的问题最为棘手。为了解这类污染物在河流-地下水系统中的行为,我们需要深入研究其物理、化学反应和生物转化过程。本研究将以各向同性均质的稳态流作为地下水渗流场,探究有机污染物的迁移与转化规律。
  对于问题一,我们查阅相关文献资料分别得出对流方程、弥散方程以及吸附作用方程。我们将基于质量守恒方程与一些假设条件,建立描述有机污染物浓度变化的一维及多维对流-弥散-吸附微分方程,接着通过有限差分法求解该一维微分方程,以便直观地观察模型参数对有机污染物迁移转化过程的影响。
  对于问题二,我们将基于给定的四种有机物液、固相实验数据,对模型进行参数调整和检验。首先,基于对流、弥散试验参数,更新微分方程的模型参数,以更准确地描述有机污染物的迁移转化过程;然后,根据四种不同河流沉积物的吸附动力学数据,重新计算吸附系数k值,由于给定的时间数据比较离散,本文使用插值方法进行数值模拟,将更新后的k值用于微分方程求解;最后,基于四种有机物液、固相状态下的初始浓度与平衡浓度数据,通过匹配对可以迭代计算出初始浓度与等温吸附24小时后平衡的浓度的吸附系数k值。然后求均值作为吸附系数k,更新微分方程模型参数。
  对于问题三,我们将在微分方程模型中引入生物降解过程,以研究微生物对有机污染物的降解特性,假设生物降解速率与微生物浓度M和有机物浓度C之间存在线性关系,则可在原有的对流弥散-吸附模型中添加生物降解项,形成新的数学模型一对流-弥散-吸附-生物降解的微分方程。

问题分析:

  问题1要求我们从已有的相关理论研究和实证分析中找到适用于本题的数学模型,用以描述河流-地下水系统中有机污染物的对流、弥散及吸附作用。由于团队相关专业知识的了解程度较低,我们决定将问题简化,建立描述河流-地下水系统中有机污染物变化的一维对流—弥散—吸附微分方程,并通过有限差分法求解该方程,以便能够直观地呈现出模型参数对有机物污染物迁移转化过程的影响,同时有利于求解问题2。
  对于第二个问题,我们将基于给定的实验数据,对模型进行参数调整和验证。首先,我们将优化微分方程的模型参数,以更准确地描述有机污染物的迁移转化过程。然后,我们将根据四种不同河流沉淀物的吸附动力学数据, 重新计算吸附系数k 值。由于给定的时间数据比较离散,我们将考虑结合插值方法进行数值模拟,最后,我们将对每种有机物在不同状态下的浓度变化情况进行模拟,以验证我们的模型和参数调整的有效性。
  对于第三个问题,我们将在微分方程模型中引入生物降解过程,以研究微生物对有机污染物的降解特性。具体地,我们将在原有的对流-弥散-吸附模型中添加生物降解项,形成新的数学模型。然后,我们将根据河流等温平衡吸附24小时后的浓度变化数据,通过迭代计算方法求解吸附系数k值。最后,我们将求得的k值的均值作为新模型的吸附系数k,以此来更新我们的数学模型。

模型假设:

  1.一维空间假设:将河流-地下水系统近似为一维空间,忽略横向扩散和纵向非均匀性;
  2.连续性假设:假设有机污染物的浓度分布在空间上具有一定的连续性和平滑性,可以用微分方程来描述;
  3.线性生物降解假设:假设生物降解速率与微生物浓度和有机物浓度之间存在线性关系,用生物降解速率常数上表示;
  4.稳态吸附假设:假设吸附过程处于稳态,吸附系数k不随时间变化;
  5.地下水流速相对于孔隙流速u来说较小,因此可以忽略其对流的影响。

论文缩略图:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"]
plt.rcParams["axes.unicode_minus"]=False
for dd in range(1,13,3):
# 模型参数
L = 100 # 系统长度(单位:m)
Nx = 24 # 空间离散化点数
T = 24 # 模拟时间(单位:天)
Nt = 1000 # 时间离散化步数
dx = L / (Nx - 1) # 空间步长
dt = T / Nt # 时间步长
v = 0.1 # 水流速度(单位:m/day)
D = 0.01 # 弥散系数(单位:m²/day)
k = 0.001 # 吸附系数(单位:1/day)
# 初始条件
C0 = np.zeros(Nx) # 初始浓度分布
C0[int(Nx / 2)] =dd # 在中心位置设置初始浓度为1.0
# 数值求解
C = np.zeros((Nt, Nx)) # 存储浓度分布的数组
C[0, :] = C0
for t in range(1, Nt)
for x in range(1, Nx - 1):
# 对流项
convective = -v * (C[t-1, x] - C[t-1, x-1]) / dx
# 弥散项
dispersive = D * (C[t-1, x+1] - 2 * C[t-1, x] + C[t-1, x-1]) / (dx**2)
# 吸附项
adsorption = -k * C[t-1, x]
# 数值更新
C[t, x] = C[t-1, x] + dt * (convective + dispersive + adsorption)
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(0, T, Nt)
X, T = np.meshgrid(x, t)
plt.contourf(X, T, C, cmap='cool')
plt.colorbar(label='浓度')
plt.xlabel('距离 (m)')
plt.ylabel('天数 (days)')
plt.title('浓度为%s_污染物浓度'%dd)
plt.savefig('./Q1/浓度为%s_污染物浓度.jpg'%dd)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
plt.rcParams["font.sans-serif"]=["SimHei"]
plt.rcParams["axes.unicode_minus"]=False
for dd in range(1,13,3):
# 模型参数
L = 100 # 系统长度(单位:m)
Nx = 24 # 空间离散化点数
T = 24 # 模拟时间(单位:天)
Nt = 1000 
dx = L / (Nx - 1) # 空间步长
dt = T / Nt # 时间步长
v = 0.1 # 水流速度(单位:m/day)
D = 0.01 # 弥散系数(单位:m²/day)
k = 0.001 # 吸附系数(单位:1/day)
# 初始条件
C0 = np.zeros(Nx) # 初始浓度分布
C0[int(Nx / 2)] =dd # 在中心位置设置初始浓度为1.0
# 数值求解
C = np.zeros((Nt, Nx)) # 存储浓度分布的数组
C[0, :] = C0
for t in range(1, Nt):
for x in range(1, Nx - 1):
# 对流项
convective = -v * (C[t-1, x] - C[t-1, x-1]) / dx
# 弥散项
dispersive = D * (C[t-1, x+1] - 2 * C[t-1, x] + C[t-1, x-1]) / (dx**2)
# 吸附项
adsorption = -k * C[t-1, x]
# 数值更新
C[t, x] = C[t-1, x] + dt * (convective + dispersive + adsorption)
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(0, T, Nt)
X, T = np.meshgrid(x, t)
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, T, C, cmap='viridis')
ax.set_xlabel('距离 (m)')
ax.set_ylabel('天数 (days)')
ax.set_zlabel('浓度')
ax.set_title('浓度为%s_污染物浓度' % dd)
plt.savefig('./Q2_1/_浓度为%s_污染物浓度.jpg' % dd)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
plt.rcParams['font.sans-serif'] = ['STSong']
plt.rcParams['axes.unicode_minus'] = False
# 创建数据集
data3 = pd.DataFrame({
'初始浓度': [0.0681, 0.1372, 0.2177, 0.3302, 0.4324, 0.5338, 0.5842, 0.6222, 0.7062, 0.7956],
'S1液相': [0.0461, 0.0722, 0.1235, 0.2150, 0.2951, 0.3716, 0.3969, 0.4547, 0.4852, 0.5714],
'S1固相': [0.1702, 0.6005, 0.8921, 1.102, 1.323, 1.572, 1.823, 2.100, 2.160, 2.192],
'S2液相': [0.0246, 0.0492, 0.0903, 0.1725, 0.2563, 0.3376, 0.3574, 0.3701, 0.4352, 0.5043],
'S2固相': [0.1852, 0.8301, 1.224, 1.527, 1.711, 1.912, 2.218, 2.471, 2.660, 2.863],
'S3液相': [0.0424, 0.0654, 0.1091, 0.2068, 0.2614, 0.3304, 0.3852, 0.4065, 0.4467, 0.5999],
'S3固相': [0.2071, 0.6683, 1.036, 1.184, 1.660, 1.984, 1.940, 2.107, 2.545, 2.937],
'S4液相': [0.0354, 0.0613, 0.0993, 0.1931, 0.2528, 0.2879, 0.3568, 0.4195, 0.5071, 0.5061],
'S4固相': [0.2772, 0.7101, 1.134, 1.321, 1.546, 1.781, 2.124, 1.977, 2.461, 2.845]
})
# 创建数据集
data4 = pd.DataFrame({
'浓度': [0.483, 0.479, 0.452, 0.418, 0.371, 0.342, 0.319, 0.311, 0.309],
'微生物浓度': [1.50E+07, 1.70E+07, 2.00E+07, 2.50E+07, 3.00E+07, 3.30E+07, 3.50E+07, 3.70E+07, 3.70E+07],
'有机物浓度比': [1, 0.991718427, 0.935817805, 0.865424431, 0.768115942, 0.708074534, 0.660455487, 0.64389234, 0.639751553],
'天数': [0, 1, 2, 3, 4, 5, 6, 7, 8]
})
from scipy.interpolate import interp1d
for ii in data3.columns[1:]:
# 模型参数
L = 100 # 系统长度(单位:m)
Nx = 24 # 空间离散化点数
T = 24 # 模拟时间(单位:天)
Nt = 1000 # 时间离散化步数
dx = L / (Nx - 1) # 空间步长
dt = T / Nt # 时间步长
# 河流-地下水参数
u = 38.67 * 0.01 # 平均孔隙流速(单位:m/day),将单位转换为cm/d
ν = 5.01 * 0.01 # 地下水渗流流速(单位:m/day),将单位转换为cm/d
D = 0.38 * (1 / 1440) * 0.01**2 # 弥散系数(单位:cm²/min 转换为 m²/d)
k = 6.32 * 0.01 # 渗透系数(单位:m/day),将单位转换为cm/d
μ = 0.01 # 生物降解速率常数
# 含水层样品的干密度和孔隙度
ρ = 1.67 # 干密度(单位:g/cm³)
n = 0.375 # 孔隙度
print(ii)
temp=data3[['初始浓度',ii]]
k_list=[]
for i in range(temp.shape[0]):
# 计算吸附系数
C_max =temp.iloc[i,0] # 最大吸附浓度
Ce = temp.iloc[i,1] # 平衡浓度
k = C_max / (Ce - C_max) * (ρ * n)
k_list.append(k)
k=np.mean(k_list)
# 初始条件
C0 = np.zeros(Nx) # 初始浓度分布
C0[int(Nx / 2)] =0.483# 在中心位置设置初始浓度为1.0
# 数值求解
C = np.zeros((Nt, Nx)) # 存储浓度分布的数组
C[0, :] = C0
# 创建插值函数
# 时间插值
interp_func = interp1d(data4['天数'], data4['浓度'], kind='quadratic')
time_interp = np.linspace(0, T, Nt)
for t in range(1, Nt):
for x in range(1, Nx - 1):
# 对流项
convective = -(u + ν) * (C[t-1, x] - C[t-1, x-1]) / dx
# 弥散项
dispersive = D * (C[t-1, x+1] - 2 * C[t-1, x] + C[t-1, x-1]) / (dx**2)
# 吸附项
adsorption = -k * (ρ * n * C[t-1, x])
# 生物降解项
bio_degradation = -μ * C[t-1, x] * interp_func(np.clip([t * dt], 0, data4["浓
度"].iloc[-1]))
# 数值更新
C[t, x] = C[t-1, x] + dt * (convective + dispersive + adsorption +
bio_degradation)
# # 数值更新
# C[t, x] = C[t-1, x] + dt * (convective + dispersive + adsorption)
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(T, 0, Nt)
if '固' in ii:
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(0, T, Nt)
else:
# 绘制浓度随时间和空间的分布图
x = np.linspace(0, L, Nx)
t = np.linspace(T, 0, Nt)
X, T = np.meshgrid(x, t)
plt.contourf(X, T, C, cmap='seismic')
plt.colorbar(label='浓度')
plt.xlabel('距离 (m)')
plt.ylabel('天数 (days)')
plt.title('%s 污染物浓度'%ii)
plt.savefig('./Q3/%s 污染物浓度.jpg'%ii)
plt.show()
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/70352.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iBooker 技术评论 20230902

一、女子同时供职 16 家公司却从不上班,全国骗薪群体至少有七八百人,为何会出现此类骗薪群体? 社保其实很好绕过。就是这些骗薪者一起创立一个外包公司,然后通过这个公司把自己外包出去。这些人和外包公司签的是劳务合同&#xf…

sentinel加密狗使用及规则配置

Sentinel加密狗是一种硬件加密设备,用于保护软件应用程序免受未经授权的访问和复制。它可以提供软件许可管理、访问控制和数据保护等功能。下面是Sentinel加密狗的使用及规则配置的相关介绍。 Sentinel加密狗的使用 插入加密狗:将Sentinel加密狗插入计算…

基于语雀编辑器的在线文档编辑与查看

概述 语雀是一个非常优秀的文档和知识库工具,其编辑器更是非常好用,虽无开源版本,但有编译好的可以使用。本文基于语雀编辑器实现在线文档的编辑与文章的预览。 实现效果 实现 参考语雀编辑器官方文档,其实现需要引入以下文件&…

【Ptyhon】关于自定义对象的Json序列化和反序列化

背景 最近使用Ptyon爬虫数据时,遇到对象无法转换为JSON序列化对象问题TypeError: Object of type Main is not JSON serializable 意思: 就是对象不能转换为JSON序列化对象 原因: 是对象没有自定义实现转换为JSON序列化对象的方法没有。 实…

centos的环境配置

YUM仓库配置 安装阿里云的base源与EPEL源 仓库和常用命令 rm -f /etc/yum.repos.d/*.repo curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo curl -o /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-7.repo yum c…

计算机语言知识点梳理

变量大小写区分 不区分大小 htmlcsssql 区分大小写 javajavascriptpythontypescriptc 弱类型语言和强类型语言 强类型语言 强类型语言也称为强类型定义语言。是一种总是强制类型定义的语言,要求变量的使用要严格符合定义,所有变量都必须先定义后使用…

Google Earth Engine 的缺点和限制

随着 Google Earth Engine 在地球科学和数据计算领域越来越流行,网上有很多介绍Google Earth Engine 的文章及 Google Earth Engine的追随者。Google Earth Engine确实是一款伟大的产品,我们应该为其点赞。但由于已经有太多人在热捧了,我这里…

数据库设计:防止MySQL字段名与关键字相撞,保护数据完整性!

MySQL是一款广泛应用的关系型数据库管理系统,对于数据库设计而言,字段名的选择是至关重要的一环。不小心选择了和MySQL关键字相同的字段名可能导致严重的数据完整性问题。下面将深入探讨如何防止MySQL字段名与关键字相撞,以保护数据的完整性。…

应用程序分类与相关基本概念介绍

0、引言 在从事软件开发的过程中,由于笔者并不是计算机专业的同学,所以时常会对一些概念感到困惑。比如: 前些年很火的前端和后端是什么意思?什么是 GUI?什么是 CLI?计算机的应用程序分为哪些种类&#x…

报错: “Data is Null. This method or property cannot be called,解决方法

在进行导入的时候报错 System.Data.SqlTypes.SqlNullValueException: "Data is Null. This method or property cannot be called on Null values."是一个在使用DataReader.GetString(i)方法时出现的异常情况。当对应字段的值为Null时,这个方法会抛出异常…

用户案例 | 蜀海供应链基于 Apache DolphinScheduler 的数据表血缘探索与跨大版本升级经验

导读 蜀海供应链是集销售、研发、采购、生产、品保、仓储、运输、信息、金融为一体的餐饮供应链服务企业。2021年初,蜀海信息技术中心大数据技术研发团队开始测试用DolphinScheduler作为数据中台和各业务产品项目的任务调度系统工具。本文主要分享了蜀海供应链在海…

【Node.js】—基本知识点总结

【Node.js】—基本知识总结 一、命令行常用操作 二、Node.js注意点 Node.js中不能使用BOM和DOM操作 总结 三、Buffer buffer是一个类似于数组的对象,用于表示固定长度的字节序列buffer的本质是一段内存空间,专门用来处理二进制数据 特点:…

postgresql-子查询

postgresql-子查询 子查询简介派生表IN 操作符ALL 操作符ANY 操作符关联子查询横向子查询EXISTS 操作符 子查询简介 子查询(Subquery)是指嵌套在其他 SELECT、INSERT、UPDATE 以及 DELETE 语句中的 查询语句 子查询的作用与多表连接查询有点类似&#x…

ElementUI浅尝辄止18:Avatar 头像

用图标、图片或者字符的形式展示用户或事物信息。 常用于管理系统或web网站的用户头像&#xff0c;在用户账户模块更换头像操作也能看到关于Avatar组件的应用。 1.如何使用&#xff1f; 通过 shape 和 size 设置头像的形状和大小。 <template><el-row class"de…

基于Python机器学习、深度学习提升气象、海洋、水文应用教程

详情点击链接&#xff1a;基于Python机器学习、深度学习提升气象、海洋、水文应用教程 前沿 Python是功能强大、免费、开源&#xff0c;实现面向对象的编程语言&#xff0c;能够在不同操作系统和平台使用&#xff0c;简洁的语法和解释性语言使其成为理想的脚本语言。除了标准…

vue深拷贝的几种实现方式

1、通过递归方式实现深拷贝 比较全面的深拷贝&#xff0c;缺点是较为繁琐 function deepClone(obj) {var target {};for (var key in obj) {if (Object.prototype.hasOwnProperty.call(obj, key)) {if (typeof obj[key] object) {target[key] deepClone(obj[key]);} else {…

链表例题小总结:

链表&#xff1a; 第一种题型&#xff1a;双指针 力扣203&#xff1a;移除链表元素 力扣题目链接 题意&#xff1a;删除链表中等于给定值 val 的所有节点。示例 1&#xff1a; 输入&#xff1a;head [1,2,6,3,4,5,6], val 6 输出&#xff1a;[1,2,3,4,5]示例 2&#xff1…

MySQL——数据类型以及对表结构的修改

MySQL的数据类型 刚才我们在创建表的时候&#xff0c;说到了一个字段类型&#xff0c;所谓的字段类型就是这个字段能存放的数据的数据类型&#xff0c;在MySQL中有以下几种数据类型&#xff1a; 数据类型 大小&#xff08;字节&#xff09; 用途 格式 INT 4 整数 FLOAT…

Unity控制程序退出

大家好&#xff0c;我是阿赵。   最近把公司的游戏发布到各种PC的游戏大厅&#xff0c;遇到了挺多奇怪的需求。之前介绍了一些Unity发布PC端控制窗口最大最小化、修改exe信息等问题&#xff0c;这次来探讨一下退出游戏的问题。 一、收到奇怪的需求 某游戏大厅要求&#xff0…

RabbitMQ从入门到精通之安装、通讯方式详解

文章目录 RabbitMQ一、RabbitMQ介绍1.1 现存问题 一、RabbitMQ介绍二、RabbitMQ安装三、RabbitMQ架构四、RabbitMQ通信方式4.1 RabbitMQ提供的通讯方式4.2 Helloworld 方式4.2Work queues4.3 Publish/Subscribe4.4 Routing4.5 Topics4.6 RPC (了解) 五、Springboot 操作RabbitM…