Kaggle Intermediate ML Part Three——Pipeline

Step 1: Define Preprocessing Steps

Understanding the Data:

  • Data source: Where is the data coming from? What format is it in (e.g., CSV, JSON)? What does it represent?
  • Data characteristics: What variables are present? What are their types (numerical, categorical, text)? Are there any missing values, outliers, or inconsistencies?
  • Model goals: What are you trying to achieve with the model? This will influence the preprocessing choices.

Common Preprocessing Techniques:

  • Data cleaning:
    • Handling missing values: Imputation (filling in with mean/median/mode), deletion, or specialized techniques like KNN imputation.
    • Outlier treatment: Capping, winsorizing, or removal based on domain knowledge.
    • Encoding categorical variables: One-hot encoding, label encoding, or frequency encoding depending on the context.
    • Text preprocessing: Lowercasing, tokenization, stop word removal, stemming/lemmatization.
  • Data transformation:
    • Scaling: Normalization (min-max scaling) or standardization (z-score) for numerical features.
    • Dimensionality reduction: Feature selection (e.g., correlation analysis, chi-square test) or feature engineering (creating new features).
    • Data integration: Combining data from different sources if necessary.

Expert Tips:

  • Iterative approach: Start with basic cleaning, then analyze the model's performance and refine preprocessing accordingly.
  • Domain knowledge: Leverage your understanding of the data and problem to guide preprocessing choices.
  • Experimentation: Try different techniques and compare results to find the optimal approach.
  • Documentation: Keep track of all preprocessing steps for reproducibility and future reference.

Step 2: Define the Model

Model Selection:

  • Consider data characteristics and problem type: For example, use linear regression for continuous predictions, logistic regression for binary classification, and decision trees for more complex relationships.
  • Think about interpretability: If explanation is important, choose a less complex model like linear regression or decision trees.
  • Prioritize model performance: Evaluate different models on the relevant metric (e.g., accuracy, AUC for classification, RMSE for regression).

Expert Tips:

  • No single best model: Experiment with different options to find the best fit for your data and problem.
  • Ensemble methods: Consider combining multiple models (e.g., random forest, gradient boosting) for improved performance.
  • Regularization: Techniques like L1/L2 regularization can prevent overfitting and improve generalization.
  • Parameter tuning: Optimize model hyperparameters using cross-validation or grid search.

Step 3: Create and Evaluate the Pipeline

Pipeline Implementation:

  • Use a machine learning library like scikit-learn to create a pipeline that combines preprocessing steps and the model.
  • Split the data into training and testing sets for evaluation.
  • Train the pipeline on the training set.
  • Evaluate the pipeline's performance on the testing set using appropriate metrics.

Expert Tips:

  • Modular design: Break down the pipeline into smaller, reusable steps for better organization and maintainability.
  • Cross-validation: Use k-fold cross-validation to get a more robust estimate of model performance.
  • Hyperparameter tuning: Tune the preprocessing steps and model hyperparameters within the pipeline for optimal results.
  • Error analysis: Examine the errors made by the model to identify areas for improvement.

Additional Considerations:

  • Computational cost: Some preprocessing steps and models can be computationally expensive. Consider this when making choices.
  • Explainability: If interpretability is crucial, choose models like linear regression or decision trees and explain their predictions.
  • Continuous improvement: Monitor model performance over time and retrain or adjust the pipeline as needed.


Step 1: Preprocessing

import pandas as pd
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder, StandardScaler# Load data
data = pd.read_csv("housing_data.csv")# Handle missing values
imputer = SimpleImputer(strategy="median")
data["LotFrontage"] = imputer.fit_transform(data[["LotFrontage"]])# Encode categorical variables
encoder = OneHotEncoder(handle_unknown="ignore")
data = pd.concat([data, pd.DataFrame(encoder.fit_transform(data[["MSSubClass"]]))], axis=1)# Scale numerical features
scaler = StandardScaler()
data["GrLivArea"] = scaler.fit_transform(data[["GrLivArea"]])
data["TotalBsmtSF"] = scaler.fit_transform(data[["TotalBsmtSF"]])# Split data into training and testing sets
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(data.drop("SalePrice", axis=1), data["SalePrice"], test_size=0.2, random_state=42
)

Step 2: Define the Model

from sklearn.linear_model import LinearRegression# Create and train the model
model = LinearRegression()
model.fit(X_train, y_train)

Step 3: Create and Evaluate the Pipeline

from sklearn.pipeline import Pipeline# Create the pipeline
pipeline = Pipeline([("imputer", imputer),("encoder", encoder),("scaler", scaler),("model", model),]
)# Evaluate the pipeline
from sklearn.metrics import mean_squared_errory_pred = pipeline.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print("Mean squared error:", mse)

Why Scale Numerical Features?

In machine learning models, features with vastly different scales can lead to several issues:

  • Dominant Features: Features with larger absolute values can overwhelm the influence of smaller features, hindering the model's ability to learn subtle relationships.
  • Distance-Based Algorithms: Algorithms like k-Nearest Neighbors or Support Vector Machines (SVMs) rely on distances between data points, and unevenly scaled features can distort these distances, affecting results.
  • Numerical Stability: Numerical operations within models can become unstable with features that have significant differences in magnitude.

Scaling addresses these problems by transforming the features to a common scale, ensuring:

  • Fair Representation: All features contribute equally to the model's learning process.
  • Accurate Distances: Distances between data points accurately reflect their true relationships.
  • Improved Numerical Stability: Calculations within the model become more reliable.

Common Scaling Techniques:

  1. Min-Max Scaling:

    • Rescales feature values to a range between a specified minimum (e.g., 0) and maximum (e.g., 1).
    • Suitable for algorithms that are sensitive to outliers.
    • Python example:
    from sklearn.preprocessing import MinMaxScalerscaler = MinMaxScaler(feature_range=(0, 1))
    scaled_data = scaler.fit_transform(data)
    
  2. Standard Scaling (Z-Score):

    • Subtracts the mean and then divides by the standard deviation of each feature.
    • Assumes features are normally distributed.
    • Python example:
    from sklearn.preprocessing import StandardScalerscaler = StandardScaler()
    scaled_data = scaler.fit_transform(data)
    
  3. Robust Scaling:

    • Similar to Z-score, but uses the median and interquartile range (IQR) for outlier-resistant scaling.
    • Suitable for heavy-tailed or skewed distributions.
    • Python example:
    from sklearn.preprocessing import RobustScalerscaler = RobustScaler()
    scaled_data = scaler.fit_transform(data)
    

Choosing the Right Technique:

  • Consider the distribution of your features (normal, skewed, heavy-tailed).
  • Evaluate the sensitivity of your model to outliers.
  • Experiment with different techniques and compare performance on your dataset.

Additional Considerations:

  • Inverse Scaling: If you need to interpret the model's predictions in the original feature units, apply the inverse scaling transformation after making predictions.
  • Scaling Pipeline: Use a Pipeline from scikit-learn to combine scaling with other preprocessing steps for efficient data transformation.

By effectively scaling numerical features, you can:

  • Improve the accuracy and stability of your machine learning models.
  • Facilitate better interpretation of results.
  • Ensure fairer treatment of all features in your model.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/702472.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++刷题】优选算法——双指针

移动零 void moveZeroes(vector<int>& nums) {size_t front 0;size_t back 0;while(back < nums.size() && nums[back] ! 0){back;}front back;while(back < nums.size()){if(0 nums[back]){back;}else{swap(nums[front], nums[back]); }} }…

Sora Text to Video 转换过程和技术要素的技术原理详细描述

转换过程&#xff1a; 初始化阶段&#xff1a;Sora 的转换过程从一个随机噪声图像开始。这个噪声图像是通过随机数生成器产生的&#xff0c;它代表了视频数据的初始状态&#xff0c;其中包含了大量的随机性和不确定性。 神经网络处理&#xff1a;这个噪声图像随后被送入一个预…

python 3.11中安装sympy(符号工具包)

1.python环境&#xff1a; 2.安装遇到问题&#xff1a; … 3.升级pip cmd命令行中&#xff0c;执行如下命令&#xff1a; python.exe -m pip installl --upgrade pip 4.再次安装sympy cmd命令行中&#xff0c;执行如下命令&#xff1a; pip install sympy 5.简单应用 对…

【坑】SpringBoot项目打包后的jar包非常小,只有4KB

一、SpringBoot项目打包后的jar包非常小&#xff0c;只有4KB? 1.1、解决方法 pom.xml中添加如下配置 <build><plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId>&l…

排列组合简单详解(附10题)(会员版)

非会员,不用注册会员也能看! https://blog.csdn.net/Runcode8/article/details/136274861https://blog.csdn.net/Runcode8/article/details/136274861 一、认识C,P,A: A.排列 A(x,y)=(x!)/[(x-y)!]=x(x-1)...(x-y+1) P.排列 P(x,y)=A(x,y) C.组合 C(x,…

Flink 1.11.0 版本介绍

Flink 1.11.0 发布于 2020 年,引入下面的新特性: 为了缓解 backpressure 下的 checkpointing 性能问题引入 unaligned checkpoints统一 Watermark Generator接口引入 Data Source API为 kubernates 引入新的部署模式:application modeUnaligned Checkpoints 触发一次 check…

针对无法确定连接参数的网口通讯PLC采集方案

年前碰到了一个需求&#xff0c; 需要针对倍福PLC进行数据采集&#xff0c; 搞定了PLC通讯协议后&#xff0c; 最大的问题出现了&#xff0c; 我们不知道PLC的密码&#xff0c; 没办法进入到PLC查询到点位&#xff0c; 而且也没办法对PLC设置路由&#xff0c; 导致没有办法连上…

构建生物医学知识图谱from zero to hero (2):文献抽取

我们选取一篇文献,将文献PDF转换成图片,然后采用pytesseract 实现图片文字识别。 import requests import pdf2image import pytesseractpdf = requests.get(https://arxiv.org/pdf/2110.03526.pdf) doc = pdf2image.convert_from_bytes(pdf.content)# Get the article text…

Linux笔记之LD_LIBRARY_PATH详解

Linux笔记之LD_LIBRARY_PATH详解 code review! 文章目录 Linux笔记之LD_LIBRARY_PATH详解1.常见使用命令来设置动态链接库路径2.LD_LIBRARY_PATH详解设置 LD_LIBRARY_PATH举例注意事项 3.替代方案使用标准路径编译时指定链接路径优先使用 rpath 还是 runpath&#xff1f;注意…

LeetCode 每日一题 2024/2/19-2024/2/25

记录了初步解题思路 以及本地实现代码&#xff1b;并不一定为最优 也希望大家能一起探讨 一起进步 目录 2/19 590. N 叉树的后序遍历2/20 105. 从前序与中序遍历序列构造二叉树2/21 106. 从中序与后序遍历序列构造二叉树2/22 889. 根据前序和后序遍历构造二叉树2/23 2583. 二叉…

Spring Cloud学习

1、什么是SpringCloud Spring cloud 流应用程序启动器是基于 Spring Boot 的 Spring 集成应用程序&#xff0c;提供与外部系统的集成。Spring cloud Task&#xff0c;一个生命周期短暂的微服务框架&#xff0c;用于快速构建执行有限数据处理的应用程序。Spring cloud 流应用程…

2024.2.25

P1135 #include<iostream> #include<algorithm> #include<cstring> using namespace std; const int N 10010; int n, A, B; int evlt[N]; int res 1e9; bool st[N]; //存每层楼走没走过 //当前在x楼, 当前按了cnt次按钮 void dfs(int x, int cnt) …

瑞_23种设计模式_外观模式

文章目录 1 外观模式&#xff08;Facade Pattern&#xff09;1.1 介绍1.2 概述1.3 外观模式的结构 2 案例一2.1 需求2.2 代码实现 3 案例二3.1 需求3.2 代码实现 4 jdk源码解析 &#x1f64a; 前言&#xff1a;本文章为瑞_系列专栏之《23种设计模式》的外观模式篇。本文中的部分…

【Vuforia+Unity】AR02-长方体物体识别(Multi Targets)

1.创建模型 选择多维长方体图,这个长方体是生活中的真实物体的拍摄图,提前把6个面拍摄好并裁剪干净。 官网创建模型https://developer.vuforia.com/targetmanager/project/targets?projectId=0ddbb5c17e7f4bf090834650bbea4995&av=false 设置长宽高,这个长宽高需要…

学算法要读《算法导论》吗?

大家好&#xff0c;我是 方圆。这篇文章是我学习算法的心得&#xff0c;希望它能够给一些将要学习算法且准备要读大部头算法书籍的朋友一些参考&#xff0c;节省一些时间&#xff0c;也为了给经典的“黑皮书”祛魅&#xff0c;我觉得这些书籍在大部分互联网从业者心中已经不再是…

【JS解构】数组解构、对象解构

解构赋值语法是一种 Javascript 表达式 解构数组&#xff1a; // 解构数组&#xff1a; // 1.如果当前对应下标没值则是undefined // 2.如果解构时设置了默认值&#xff0c;例如 c55和d66&#xff0c; c对应下标有值时则使用该值&#xff0c;d对应的没值时使用默认值66; 默认值…

数组与指针相关

二级指针与指针数组 #include <stdio.h> #include <stdlib.h> int main() { // 定义一个指针数组&#xff0c;每个元素都是一个指向int的指针 int *ptr_array[3]; // 为指针数组的每个元素分配内存 ptr_array[0] malloc(2*sizeof(int)); ptr_array[1] m…

USB Micro引脚及相应原理图绘制

前言&#xff1a;博主为实现绘制USB Micro输入口原理图&#xff0c;首先在 GD32F103XX的数据手册中找到引脚的功能描述&#xff0c;找到USBDM与USBDP功能&#xff0c;分别为引脚PA11与引脚PA12。然后进行相应的原理图绘制。 * USBDM。USBDM 引脚是与通用串行总线 (Universal Se…

20210505-20240223 CSDN 1024天 创作纪念日

作为一个小白&#xff0c;我没想到自己在不知不觉间就走过了如此长久的一段旅程。恍然间&#xff0c;三年多的时光已经过去了。 机缘 我首次写博客是为了记录日常&#xff0c;分享生活。 在这1024天里&#xff0c;我做了一些记录和分享&#xff0c;特别是遇到一些有趣的、值得…

2024 年了,如何 0 基础开始学习 Vue ?

最近 5 个月&#xff0c;我都在忙着构建我的第一开源项目 HexoPress&#xff0c;这个项目是使用 Electron Vue 3 TypeScript 等技术实现的&#xff0c;一方面&#xff0c;我真的很需要一款合自己心意的博客编辑器&#xff0c;另一方面&#xff0c;我也是真心想学习 Electron …