使用决策树算法预测隐形眼镜类型

目录

谷歌笔记本(可选)

编写算法:决策树

 准备数据:拆分数据集

测试算法:构造注解树

使用算法:预测隐形眼镜类型


谷歌笔记本(可选)

from google.colab import drive
drive.mount("/content/drive")

output

Mounted at /content/drive

编写算法:决策树

from math import log
import operatordef calcShannonEnt(dataSet):numEntries = len(dataSet)labelCounts = {}for featVec in dataSet:currentLabel = featVec[-1]if currentLabel not in labelCounts.keys():labelCounts[currentLabel] = 0labelCounts[currentLabel] += 1shannonEnt = 0for key in labelCounts:prob = float(labelCounts[key]) / numEntriesshannonEnt -= prob * log(prob, 2)return shannonEnt

这段代码是用于计算给定数据集的香农熵(Shannon Entropy)的Python实现。香农熵在信息论中是一个度量不确定性或信息混乱程度的重要概念,在机器学习领域,特别是在决策树算法中,用于评估特征对于划分数据集纯度的贡献。

1. `calcShannonEnt`函数接收一个名为dataSet的数据集作为输入,该数据集通常是由特征向量构成的列表,每个特征向量最后一个元素为其对应的类别标签。

2. 首先统计数据集中样本的数量:`numEntries = len(dataSet)`。

3. 初始化一个字典`labelCounts`,用于存储各类别标签出现的次数。通过遍历整个数据集,对每一个特征向量(featVec),提取其类别标签(currentLabel),并将其计数加到字典对应键值上。

4. 计算香农熵:初始化`shannonEnt`为0,然后遍历`labelCounts`字典,对于每个类别标签key,计算其概率(通过其出现次数除以总样本数得到),然后用公式 `- prob * log(prob, 2)` 计算其熵值,并累加到`shannonEnt`上。这里的log是以2为底的对数,因为熵的单位通常是比特(bits)。

5. 最后返回计算得出的香农熵值`shannonEnt`。

总结:这个函数的主要目的是衡量给定数据集中各类别的不确定性或分布均匀性,熵值越大表示不确定性越高,越需要进行划分以提高模型的纯度。

def splitDataSet(dataSet, axis, value):retDataSet = []for featVec in dataSet:if featVec[axis] == value:reducedFeatVec = featVec[:axis]reducedFeatVec.extend(featVec[axis+1:])retDataSet.append(reducedFeatVec)return retDataSet
def chooseBestFeatureToSplit(dataSet):numFeatures = len(dataSet[0]) - 1   # 2baseEntropy = calcShannonEnt(dataSet)  # 0.9709505944546686bestInfoGain = 0bestFeature = -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0for value in uniqueVals:subDataSet = splitDataSet(dataSet, i, value)prob = len(subDataSet) / float(len(dataSet))newEntropy += prob * calcShannonEnt(subDataSet)infoGain = baseEntropy - newEntropyif(infoGain > bestInfoGain):bestInfoGain = infoGainbestFeature = ireturn bestFeature

这段代码是用于选择数据集中最佳特征进行划分的函数,通常在决策树构建过程中使用。其主要目的是通过计算信息增益(Information Gain)来确定最优分割特征。

1. numFeatures 计算特征的数量,等于数据集中每个样本向量元素的个数减1(因为最后一个元素通常是类别标签)。

2. 初始化基本熵(baseEntropy),通过调用之前定义的 calcShannonEnt(dataSet) 函数计算整个数据集的香农熵。

3. 初始化最佳信息增益(bestInfoGain)为0,以及最佳特征索引(bestFeature)为-1,分别用于存储找到的最大信息增益和对应的特征编号。

4. 遍历所有特征(i从0到numFeatures-1): 

        a. 通过列表推导式提取出当前特征i的所有取值,存入featList。

        b. 将featList中的唯一值转化为一个集合(uniqueVals),这将作为当前特征可能的划分依据。

        c. 对于uniqueVals中的每一个value,利用splitDataSet函数根据特征i和该value划分数据集得到subDataSet。

        d. 计算划分后子数据集的概率(prob),即子数据集大小除以原数据集大小。

        e. 计算划分后的子数据集的香农熵,并乘以对应概率得到加权平均熵(newEntropy)。

        f. 使用公式计算信息增益:infoGain = baseEntropy - newEntropy

        g. 如果当前信息增益大于已记录的最佳信息增益,则更新bestInfoGain和bestFeature。

5. 循环结束后返回最佳特征索引(bestFeature)。这个特征就是当前能带来最大信息增益的特征,用于下一步决策树节点的划分。

def majorityCnt(classList):classCount={}for vote in classList:if vote not in classCount.keys():classCount[vote] = 0classCount[vote] += 1sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)return sortedClassCount[0][0]
def createTree(dataSet, labels):classList = [example[-1] for example in dataSet]if classList.count(classList[0]) == len(classList):return classList[0]if len(dataSet[0]) == 1:return majorityCnt(classList)bestFeat = chooseBestFeatureToSplit(dataSet)bestFeatLabel = labels[bestFeat]myTree = {bestFeatLabel:{}}subLabels = labels[:]del(subLabels[bestFeat])featValues = [example[bestFeat] for example in dataSet]uniqueVals = set(featValues)for value in uniqueVals:myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)return myTree

这段代码是用于创建决策树的函数,名为`createTree`。它递归地构建决策树直到满足停止条件。

1. 首先计算数据集classList中最后一个元素(类别标签)的唯一值数量,如果所有样本的类别标签都相同,则说明当前节点下的样本已经足够纯,无需继续划分,直接返回这个唯一的类别标签作为叶子节点的预测结果。

2. 检查是否所有特征已经被用尽(即每个样本只有一个特征),如果是,则返回该节点下出现次数最多的类别标签(通过调用`majorityCnt(classList)`实现)。

3. 使用`chooseBestFeatureToSplit`函数选择最优特征进行划分,并获取其对应的标签名称(bestFeatLabel)。

4. 初始化一个新的字典结构myTree,以表示当前节点以及其子节点。字典的键为最优特征的标签,值为另一个字典,后续将填充各个特征取值对应的子树。

5. 创建一个子标签列表subLabels,它是原标签列表labels的一个副本,然后删除最优特征对应的标签,这样在构建子节点时不会重复考虑此特征。

6. 提取数据集中最优特征的所有取值并转化为一个集合uniqueVals。

7. 遍历uniqueVals中的每一个特征取值value:
   a. 调用`splitDataSet(dataSet, bestFeat, value)`对数据集进行划分,得到该特征取值对应的新子数据集。
   b. 以最优特征的取值value作为键,递归调用`createTree`生成对应的子树,并将其添加到myTree[bestFeatLabel]中。

8. 当所有子树构造完成后,返回整个决策树结构myTree。整个过程按照信息增益最大原则自顶向下构建决策树,直至达到终止条件。

 

 准备数据:拆分数据集

fr = open('/content/drive/MyDrive/MachineLearning/机器学习/决策树/使用决策树预测隐形眼镜类型/lenses.txt')
lenses = [inst.strip().split('\t') for inst in fr.readlines()]
lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
lensesTree = createTree(lenses, lensesLabels)
lensesTree, lensesLabels

output

({'tearRate': {'normal': {'astigmatic': {'no': {'age': {'presbyopic': {'prescript': {'myope': 'no lenses','hyper': 'soft'}},'pre': 'soft','young': 'soft'}},'yes': {'prescript': {'myope': 'hard','hyper': {'age': {'presbyopic': 'no lenses','pre': 'no lenses','young': 'hard'}}}}}},'reduced': 'no lenses'}},['age', 'prescript', 'astigmatic', 'tearRate'])

测试算法:构造注解树

import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',xytext=centerPt, textcoords='axes fraction',va='center', ha='center', bbox=nodeType, arrowprops=arrow_args)
def getNumLeafs(myTree):numLeafs = 0firstStr = list(myTree.keys())[0]secondDict = myTree[firstStr]for key in secondDict.keys():if type(secondDict[key]).__name__ == 'dict':numLeafs += getNumLeafs(secondDict[key])else:numLeafs += 1return numLeafs
def getTreeDepth(myTree):maxDepth = 0firstStr = list(myTree.keys())[0]secondDict = myTree[firstStr]for key in secondDict.keys():if type(secondDict[key]).__name__=='dict':thisDepth = 1 + getTreeDepth(secondDict[key])else:thisDepth = 1if thisDepth > maxDepth:maxDepth = thisDepthreturn maxDepth
def plotMidText(cntrPt, parentPt, txtString):xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
def plotTree(myTree, parentPt, nodeTxt):numLeafs = getNumLeafs(myTree)depth = getTreeDepth(myTree)firstStr = list(myTree.keys())[0]cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)plotMidText(cntrPt, parentPt, nodeTxt)plotNode(firstStr, cntrPt, parentPt, decisionNode)secondDict = myTree[firstStr]plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalDfor key in secondDict.keys():if type(secondDict[key]).__name__=='dict':plotTree(secondDict[key],cntrPt,str(key))else:plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalWplotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
def createPlot(inTree):fig = plt.figure(1, facecolor='white')fig.clf()axprops = dict(xticks=[], yticks=[])createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)plotTree.totalW = float(getNumLeafs(inTree))plotTree.totalD = float(getTreeDepth(inTree))plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;plotTree(inTree, (0.5,1.0), '')plt.show()
createPlot(lensesTree)

output

使用算法:预测隐形眼镜类型

def classify(inputTree, featLabels, testVec):firstStr = list(inputTree.keys())[0]secondDict = inputTree[firstStr]featIndex = featLabels.index(firstStr)for key in secondDict.keys():if testVec[featIndex] == key:if type(secondDict[key]).__name__ == 'dict':classLabel = classify(secondDict[key], featLabels, testVec)else:classLabel = secondDict[key]return classLabel
classify(lensesTree, lensesLabels, ['pre', 'myope', 'yes', 'normal'])

output

'hard'

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/702373.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ubuntu20.04 tvm 安装教程

ubuntu20.04 tvm 安装教程&#xff1a; 参考&#xff1a; 1. https://tvm.hyper.ai/docs/install/from_source/ 2. https://blog.csdn.net/wenwen_2020/article/details/134856293 步骤&#xff1a; 1. 创建容器&#xff1a;docker run -itd --name tvm --gpusall --ipchost…

Springboot之压缩逻辑源码跟踪流程

背景 在项目开发过程中&#xff0c;前后端参数比较多&#xff0c;导致网络传输耗时比较多&#xff0c;因此想将数据压缩传输&#xff0c;以减少网络传输的耗时&#xff0c;从而减少接口的响应时间&#xff0c;可以自己实现&#xff0c;但是spring相关的框架已经内置了该功能&am…

堆排序、快速排序和归并排序

堆排序、快速排序和归并排序是所有排序中最重要的三个排序&#xff0c;也是难度最大的三个排序&#xff1b;所以本文单独拿这三个排序来讲解 目录 一、堆排序 1.建堆 2.堆排序 二、快速排序 1.思想解析 2.Hoare版找基准 3.挖坑法找基准 4.快速排序的优化 5.快速排序非…

C语言--左旋字符/右旋字符实现及其判断

1.题目解释 左旋就是把对应的左边的放到右边 例如ABCDEF左旋2个字符就是BCDEFAB&#xff0c;左旋3个字符就是DEFABC&#xff1b; 2.代码实现 void leftmove(char* str, int k) {int j 0;assert(str);for (j 0; j < k; j){char temp *str;int len strlen(str);int i …

单个文件实现cpu的信息检测:ruapu.h的学习笔记

https://github.com/nihui/ruapu是nihui大佬开发的用单文件检测CPU特性的项目 ruapu.h的使用 "ruapu.h"主要提供了两个函数 ruapu_init 和 ruapu_supports&#xff0c;分别用于初始化和检测指令集支持。 // 使用示例见&#xff1a;https://github1s.com/nihui/rua…

MyBatis核心配置文件

1、properties属性&#xff1a; 将变量提取出来变成全局变量 enable-default-value&#xff1a;启动默认值 数据库环境四要素 2、settings属性 &#xff1a; 开启二级缓存&#xff0c;开启延迟加载懒加载 消极懒加载积极懒加载 <setting name"cacheEnable" valu…

Spring数据脱敏实现

在当今的数字化时代&#xff0c;数据安全和个人隐私保护变得日益重要。为了遵守各种数据保护法规&#xff0c;如欧盟的GDPR&#xff08;通用数据保护条例&#xff09;&#xff0c;企业在处理敏感信息时需要格外小心。数据脱敏是一种常见的技术手段&#xff0c;用于隐藏敏感数据…

Servlet使用Cookie和Session

一、会话技术 当用户访问web应用时&#xff0c;在许多情况下&#xff0c;web服务器必须能够跟踪用户的状态。比如许多用户在购物网站上购物&#xff0c;Web服务器为每个用户配置了虚拟的购物车。当某个用户请求将一件商品放入购物车时&#xff0c;web服务器必须根据发出请求的…

windows实现ip1:port1转发至ip2:port2教程

第一步&#xff1a;创建虚拟网卡(如果ip1为本机127.0.0.1跳过此步骤)&#xff0c;虚拟网卡的IPV4属性设置ip1 1> 创建虚拟网卡参见 Windows系统如何添加虚拟网卡&#xff08;环回网络适配器&#xff09;_windows添加虚拟网卡-CSDN博客​​​​​​ 2> 设置虚拟网卡使用…

MongoDB索引解析:工作原理、类型选择及优化策略

MongoDB&#xff0c;作为一款广受欢迎的NoSQL数据库&#xff0c;以其灵活的数据模型和出色的性能赢得了开发者的青睐。然而&#xff0c;随着数据量的不断增长和查询需求的日益复杂&#xff0c;如何确保高效的查询性能成为了关键。这时&#xff0c;索引的重要性便凸显出来。本文…

【Go的函数】

函数 函数的引入函数细节祥讲包的引入包的细节详讲init函数匿名函数闭包defer关键字系统函数字符串相关函数日期和时间相关函数内置函数 函数的引入 【1】为什么要使用函数&#xff1a; 提高代码的复用&#xff0c;减少代码的冗余&#xff0c;代码的维护性也提高了 【2】函数…

简单mock server模拟用户请求给小程序提供数据

整理小程序代码时发现一此小程序离开了mock-server基本上没有办法显示了,因此用node,express来满足给小程序提供演示数据的功能 const express require(express); const { createCanvas, Image } require(canvas); const fs require(fs); const path require(path);…

Python爬虫实战:图片爬取与保存

引言&#xff1a; 在本文中&#xff0c;我们将学习如何使用Python创建一个简单的图片爬虫。 我们将利用requests库来发送HTTP请求&#xff0c;BeautifulSoup库来解析HTML页面&#xff0c;以及os和shutil库来下载和保存图片。通过这个教程&#xff0c;你将学会如何爬取网…

你要不要搞副业

最近看到了几个网友关于年轻人要不要搞副业的一点讨论&#xff0c;学习到了很多。整理分享如下&#xff1a; plantegg 你要不要搞副业&#xff1f; 最近网上看到很多讨论搞副业和远程工作的&#xff0c;我也说点自己的经验看法 当然这完全是出于个人认知肯定不是完全对的、也…

react + Typescript 中 react有多少内置的类型 分别是什么

react Typescript 中 react有多少内置的类型 分别是什么 React 和 TypeScript 结合使用时&#xff0c;React 提供了一系列的内置类型&#xff08;也称为类型定义或类型别名&#xff09;来帮助你在 TypeScript 中编写类型安全的代码。这些类型定义涵盖了 React 的各个方面&…

day4:对话框与事件

使用qt搭建一个简易的闹钟系统 #include "second.h" #include "ui_second.h"second::second(QWidget *parent) :QWidget(parent),ui(new Ui::second) {ui->setupUi(this);this->setWindowFlag(Qt::FramelessWindowHint);this->setAttribute(Qt::…

面试纪实(一)

类加载机制&#xff0c;解决了什么问题 类加载机制&#xff0c;是在程序运行时&#xff0c;加载字节码文件到内存中使用的过程&#xff0c;由jvm的类加载器完成&#xff0c;包括加载&#xff0c;链接&#xff08;验证&#xff0c;准备&#xff0c;解析&#xff09;&#xff0c…

《高效使用Redis》- 由面试题“Redis是否为单线程”引发的思考

由面试题“Redis是否为单线程”引发的思考 很多人都遇到过这么一道面试题&#xff1a;Redis是单线程还是多线程&#xff1f;这个问题既简单又复杂。说他简单是因为大多数人都知道Redis是单线程&#xff0c;说复杂是因为这个答案其实并不准确。 难道Redis不是单线程&#xff1f…

手把手教你Jenkins整合Jmeter实现自动化接口测试!

01、在机器上安装jmeter 下载&#xff1a;http://jmeter.apache.org/download_jmeter.cgi 这里我用了一台Windows安装jmeter用来写接口测试的脚本&#xff0c;启动前修改jmeter.properties 中 jmeter.save.saveservice.output_format值为xml。 编写接口测试脚本&#xff1a; 脚…

CSS @符规则(@font-face、@keyframes、@media、@scope等)

随着前端开发的不断发展&#xff0c;CSS 的功能日益强大&#xff0c;其中 规则扮演着举足轻重的角色。它们不仅扩展了 CSS 的功能边界&#xff0c;还为开发者提供了更加灵活和高效的样式定义方式&#xff0c;让我们来一同探索这些强大而实用的 规则吧&#xff01; font-face …