图解目标检测 之 【YOLOv9】 算法 最全原理详解

YOLOv9与SOTA模型对比

在这里插入图片描述

什么是 YOLOv9?YOLOv9是YOLO系列中的最新产品,是一种实时目标检测模型。它通过先进的深度学习技术和架构设计,包括通用 ELAN (GELAN) 和可编程梯度信息 (PGI),展现出更好的性能。

YOLO 系列通过引入计算机视觉中的突破性概念(例如通过卷积神经网络 (CNN)一次性处理整个图像),长期以来彻底改变了物体检测领域。

从YOLOv1到最新的YOLOv9,它的每一次迭代都不断完善和集成先进技术,以提高准确性、速度和效率,使其成为跨领域和场景的实时目标检测的首选解决方案。

让我们阅读一下 YOLOv9 的概述并了解新功能。

一.YOLOv9 概述

YOLOv9 是 YOLO(You Only Look Once)系列实时目标检测系统的最新版本。它建立在以前的版本之上,融合了深度学习技术和架构设计的进步,以在对象检测任务中实现卓越的性能。YOLOv9将可编程梯度信息 (PGI) 概念与通用 ELAN (GELAN)架构相结合而开发,代表了准确性、速度和效率方面的重大飞跃。

二.YOLO的演变

YOLO系列实时物体检测器的发展特点是不断完善和集成先进算法以提高性能和效率。

最初,YOLO 引入了通过卷积神经网络 (CNN) 一次性处理整个图像的概念。随后的迭代,包括 YOLOv2 和 YOLOv3,通过结合批量归一化、锚框和特征金字塔网络 (FPN) 等技术,提高了准确性和速度。

这些增强功能在 YOLOv4 和 YOLOv5 等模型中得到了进一步完善,引入了CSPDarknet和PANet等新技术来提高速度和准确性。除了这些进步之外,YOLO 还集成了 CSPNet 和 ELAN 等各种计算单元及其变体,以提高计算效率。

此外,改进的预测头(如 YOLOv3 头或 FCOS 头)已用于精确的物体检测。尽管出现了基于 DETR 架构的RT DETR等替代实时目标检测器,但 YOLO 系列由于其跨不同领域和场景的多功能性和适用性,仍然被广泛采用。

最新迭代YOLOv9建立在YOLOv7的基础上,利用通用ELAN(GELAN)架构和可编程梯度信息(PGI)进一步增强其功能,巩固其作为新一代顶级实时物体检测器的地位。

YOLO 的发展体现了对创新和改进的持续承诺,从而在实时目标检测任务中实现了最先进的性能。

三.YOLOv9 主要特点

  1. 实时对象检测: YOLOv9 通过提供实时对象检测功能保持了 YOLO 系列的标志性功能。这意味着它可以快速处理输入图像或视频流,并准确检测其中的对象,而不会影响速度。
  2. PGI集成: YOLOv9融合了可编程梯度信息(PGI)概念,有助于通过辅助可逆分支生成可靠的梯度。这确保深度特征保留执行目标任务所需的关键特征,解决深度神经网络前馈过程中信息丢失的问题。
  3. GELAN架构: YOLOv9采用通用ELAN(GELAN)架构,旨在优化参数、计算复杂度、准确性和推理速度。通过允许用户为不同的推理设备选择合适的计算模块,GELAN 增强了 YOLOv9 的灵活性和效率。
  4. 性能提升:实验结果表明,YOLOv9 在 MS COCO 等基准数据集上的目标检测任务中实现了最佳性能。它在准确性、速度和整体性能方面超越了现有的实时物体检测器,使其成为需要物体检测功能的各种应用的最先进的解决方案。
  5. 灵活性和适应性: YOLOv9 旨在适应不同的场景和用例。其架构可以轻松集成到各种系统和环境中,使其适用于广泛的应用,包括监控、自动驾驶车辆、机器人等。

四.YOLOv9 架构更新

将可编程梯度信息(PGI)和GLEAN(用于对象检测的生成潜在嵌入)架构集成到YOLOv9中可以增强其在对象检测任务中的性能。以下是如何将这些组件集成到 YOLOv9 架构中以增强性能:

PGI整合

在这里插入图片描述
6. 主分支集成: PGI的主分支代表网络在推理过程中的主要路径,可以无缝集成到YOLOv9架构中。这种集成确保推理过程保持高效,而不会产生额外的计算成本。
7. 辅助可逆分支: YOLOv9和许多深度神经网络一样,随着网络的加深,可能会遇到信息瓶颈的问题。可以合并 PGI 的辅助可逆分支来解决这个问题,为梯度流提供额外的路径,从而确保损失函数的梯度更可靠。
8. 多级辅助信息: YOLOv9通常采用特征金字塔来检测不同大小的物体。通过集成来自 PGI 的多级辅助信息,YOLOv9 可以有效处理与深度监督相关的错误累积问题,特别是在具有多个预测分支的架构中。这种集成确保模型可以从多个级别的辅助信息中学习,从而提高不同尺度的对象检测性能。

GLEAN架构

在这里插入图片描述
广义高效层聚合网络(GELAN)是一种新颖的架构,它结合了 CSPNet 和 ELAN 原理来进行梯度路径规划。它优先考虑轻量级设计、快速推理和准确性。GELAN 通过允许任何计算块来扩展 ELAN 的层聚合,从而确保灵活性。

该架构旨在实现高效的特征聚合,同时在速度和准确性方面保持有竞争力的性能。GELAN的整体设计融合了CSPNet的跨级部分连接和ELAN的高效层聚合,以实现有效的梯度传播和特征聚合。

五.YOLOv9 结果

YOLOv9 的性能在用于对象检测任务的 MS COCO 数据集上进行了验证,展示了集成 GELAN 和 PGI 组件的有效性:

参数利用

YOLOv9 利用 Generalized ELAN (GELAN) 架构,该架构专门采用传统的卷积算子。尽管如此,与依赖深度卷积的最先进方法相比,YOLOv9 实现了卓越的参数利用率。这突显了 YOLOv9 在优化模型参数的同时保持目标检测高性能的效率和有效性。

灵活性和可扩展性

YOLOv9 中集成的可编程梯度信息 (PGI) 组件增强了其多功能性。PGI 使 YOLOv9 能够适应多种模型,从轻型架构到大规模架构。这种灵活性使得 YOLOv9 能够适应各种计算需求和模型复杂性,从而适合不同的部署场景。

信息保留

通过利用 PGI,YOLOv9 确保处理每一层的数据丢失,确保在训练过程中保留完整的信息。此功能对于从头开始训练的模型特别有利,因为与使用大型数据集预训练的模型相比,它使它们能够获得更好的结果。YOLOv9 在整个训练过程中保留关键信息的能力有助于其在目标检测任务中的高精度和稳健性能。

YOLOv9 要点

1.顶尖的实时物体检测模型。
2. 先进的架构设计:结合了通用 ELAN (GELAN) 架构和可编程梯度信息 (PGI),以提高效率和准确性。
3. 与 SOTA 相比,无与伦比的速度和效率:以卓越的速度和效率在目标检测任务中实现顶级性能。


1.AIGC未来发展前景

未完持续…

1.1 人工智能相关科研重要性

拥有一篇人工智能科研论文及专利软著竞赛是保研考研留学深造以及找工作的关键门票!!!
拥有一篇人工智能科研论文及专利软著竞赛是保研考研留学深造以及找工作的关键门票!!!
拥有一篇人工智能科研论文及专利软著竞赛是保研考研留学深造以及找工作的关键门票!!!

重要的事情说三遍

2.YOLOv9 名师1对1实战班

教你快速上手YOLOv9,深入了解YOLOv9的每一个技术原理,手把手教你如何将YOLOv9应用到自己的数据集中,如何跑通YOLOv9代码并在自己的数据集上取得顶尖的效果,还会手把手教你如何发一篇与之相关的论文。如果此时你正在为毕业论文发愁,为没有一个项目经验发愁,赶紧后台咨询叭, 心动不如行动,赶快来吧~

3.AIGC应用班

教你快速熟练使用AIGC工具,提升效率节约时间,在熟悉各个AIGC模型原理的同时也熟练掌握如何使用AIGC工具,在AIGC应用班还会教你如何使用AIGC搞副业,月入过万不是梦!心动不如行动,赶快来吧~

📩咨询又不收费,咨询也没损失,不逼自己一把都不知道潜力有多大!
🌟🌟🌟🌟🌟🌟🌟🌟
【立即后台咨询】搞定AIGC应用难题!欢迎评论区互动提问

4.AI 绘画系统班(基础+进阶)

教你快速使用Stable-Diffusion,Midjourney等主流AI绘画工具,在办公创作等极大提升效率,同时还会教你如何使用AI绘画工作搞副业,月入过万不是梦!心动不如行动,赶快来吧~

5.人工智能顶会论文辅导(全球科研论文辅导顶尖团队)

关于如何报名人工智能顶会论文辅导请后台私信我

5.1 简介

计算机领域顶会论文,CCF,SCI,EI,专利竞赛软著等1v1论文辅导!
👇【立即咨询】一站式服务,短期快速投稿

💥个性化的指导和顶尖的科研团队支持,助您攀登科研高峰

对于计算机专业的硕博生来说,拥有一篇人工智能科研论文及专利软著竞赛是保研考研留学深造以及找工作的关键门票!!!

🏃无论您是想申请研究生、博士生,还是渴望赴海外留学,或是立志进入大厂的核心岗位,一篇高质量的SCI/CCF论文是关键所在!我们的团队充满热情和专业知识,致力于为您提供卓越的科研指导和论文辅导服务。

⚠️处在导师放养的困境,无人指导
⚠️缺乏创意、缺乏写作技巧,或是面临论文课题无从下手
⚠️毕业要求高,毕业求职压力大
⚠️论文课题无从下手,熬夜失眠狂脱发

🎓QS50专业博士团队,为你的科研保驾护航!

📍QS前50科研学者/博士/博士后/大厂算法研究员
📍一站式全流程论文服务,点亮您的学术之路。
📍顶会主席、审稿人、期刊编辑协同助阵,增大中稿概率
📍全过程陪伴至录取,不中可售后退费!

⚠️特别提示:个人信息严格保密,保证论文唯一性,不dai写!❌❌❌
📩咨询又不收费,咨询也没损失,不逼自己一把都不知道潜力有多大!
🌟🌟🌟🌟🌟🌟🌟🌟
【立即后台咨询】搞定论文难题!欢迎评论区互动提问

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/702254.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java/Python/Go不同开发语言基础数据结构和相关操作总结-GC篇

Java/Python/Go不同开发语言基础数据结构和相关操作总结 1. 常见gc方式1.1 gc判断对象是否存活1.2 引用计数法1.2 标记-清除算法1.3 复制算法1.4 标记-压缩算法1.5 分代收集算法 2. java的gc方式以及垃圾回收器2.1 gc方式2.1 gc回收器2.1.1 Serial收集器2.1.2 ParNew收集器2.1.…

Socket、UDP、TCP协议和简单实现基于UDP的客户端服务端

目录 Socket TCP和UDP区别 UDP:无连接,不可靠传输,面向数据报,全双工 TCP:有连接,可靠传输,面向字节流,全双工 无连接和有连接 可靠传输和不可靠传输 面向数据报和面向字节流…

学习或从事鸿蒙开发工作,有学历要求吗?

目前安卓有2,000万的开发者。本科及以上学历占比为35%;iOS有2,400万开发者,本科及以上学历占比为40% 绝大多数的前端开发者都是大专及以下学历,在2023年华为开发者大会上余承东透露华为的开发者目前有200万,但鸿蒙开发者统计的数据…

C#,数组数据波形排序(Sort in Wave Form)的朴素算法与源代码

1 波形排序 所谓“波形排序”就是一大一小。 将n个身高互不相同的人排成一行 ,对于每个人 ,要求他要么比相邻的人均高 ,要么比相邻的人均矮 ,问共有多少种排法 ,这一问题称为波形排列问题。 2 源程序 using System; using System.Collections; using System.Collections.Gen…

[嵌入式系统-33]:RT-Thread -18- 新手指南:三种不同的版本、三阶段学习路径

目录 前言:学习路径:入门学习-》进阶段学习》应用开发 一、RT-Thread版本 1.1 标准版 1.2 Nano 1.3 Smart版本 1.4 初学者制定学习路线 1.5 RT-Thread在线文档中心目录结构 1.6 学习和使用RT-Thread的三种场景 二、入门学习阶段:内…

信息系统项目管理师论文分享(质量管理)

水一篇文章。我发现身边考高项的朋友很多都是论文没过,我想着那就把我的论文分享出来,希望能有帮助。 质量管理 摘要 2020年5月,我作为项目经理参加了“某市某医联体的互联网诊疗(互联网医院和远程医疗)平台”的建设…

编程的基础:理解时间和空间复杂度

编程的基础:理解时间和空间复杂度 时间复杂度空间复杂度示例常数时间复杂度 O(1)线性时间复杂度 O(n)线性对数时间复杂度 O(n log n)二次时间复杂度 O(n^2)指数时间复杂度 O(2^n) 空间复杂度示例常数空间复杂度 O(1)线性空间复杂度 O(n)线性对数空间复杂度 O(log n)…

apache 模式、优化、功能 与 nginx优化、应用

一、I/O模型——Input/Output模型 1.同步/异步 A程序需要调用B程序的某一个功能,A发送一个请求需要B完成一个任务 同步:B不会主动去通知A是否完成需要A自己去问 异步:B会主动通知A是否完成 2.阻塞/非阻塞 A发送一个请求需要B完成一个任务 …

Vision Mamba:使用双向状态空间模型进行高效视觉表示学习

模型效果 将DeiT和Vim模型之间的性能和效率比较,为了进行准确性比较,我们首先在IN1K分类数据集上预训练DeiT和Vim,然后在不同的下游密集预测任务上微调通用主干,即,语义分割、目标检测、实例分割。结果表明&#xff0c…

Maven 私服 Nexus3

一、Maven和Nexus3 简介 Maven是一个采用纯Java编写的开源项目管理工具,采用一种被称之为Project Object Model(POM)概念来管理项目,所有的项目配置信息都被定义在一个叫做POM.xml的文件中, 通过该文件Maven可以管理项目的整个生命周期,包括…

2024年危险化学品经营单位主要负责人证考试题库及危险化学品经营单位主要负责人试题解析

题库来源:安全生产模拟考试一点通公众号小程序 2024年危险化学品经营单位主要负责人证考试题库及危险化学品经营单位主要负责人试题解析是安全生产模拟考试一点通结合(安监局)特种作业人员操作证考试大纲和(质检局)特…

Ubuntu22.04和Windows10双系统安装

概要 本篇演示Ubuntu22.04和Windows10双系统的安装。先安装Ubuntu22.04,再安装Windows10。 一、说明 1、电脑 笔者的电脑品牌是acer(宏碁/宏基) 电脑开机按F2进入BIOS 电脑开机按F12进入Boot Manager 2、U盘启动盘 需要用到两个U盘启动盘 (1&a…

市场复盘总结 20240223

仅用于记录当天的市场情况,用于统计交易策略的适用情况,以便程序回测 短线核心:不参与任何级别的调整,采用龙空龙模式 一支股票 10%的时候可以操作, 90%的时间适合空仓等待 二进三: 进级率中 57% 最常用的…

牛客周赛 Round 33 解题报告 | 珂学家 | 思维场

前言 整体评价 感觉这场更偏思维,F题毫无思路,但是可以模拟骗点分, E题是dij最短路. A. 小红的单词整理 类型: 签到 w1,w2 input().split() print (w2) print (w1)B. 小红煮汤圆 思路: 模拟 可以从拆包的角度去构建模拟 注意拆一包,可以…

vmware安装centos 7.9 操作系统

vmware安装centos 7.6 操作系统 1、下载centos 7.9 操作系统镜像文件2、安装centos 7.9 操作系统3、配置centos 7.6 操作系统3.1、配置静态IP地址 和 dns3.2、查看磁盘分区3.3、查看系统版本 1、下载centos 7.9 操作系统镜像文件 本文选择centos 7.9 最小化安装镜像包 这里选…

Nest创建神经元,并显示电压变化曲线

nest 安装与介绍 NEST(神经模拟工具)最初是在 1990 年代后期开发的。它的主要目标是作为计算神经科学模拟器。它支持具有不同生物学细节水平的各种神经元和突触模型。例如,NEST 的神经元模型范围从泄漏积分和激发模型到详细的 Hodgkin-Huxle…

python jupyter notebook打开页面方便使用

如果没安装jupyter, 请安装: pip install jupyter notebook 运行jupyter notebook jupyter-notebook

03|Order by与Group by优化

索引顺序依次是 : name,age,position 案例1 EXPLAIN SELECT * FROM employees WHERE name LiLei AND position dev ORDER BY age;分析: 联合索引中只是用到了name字段做等值查询[通过key_len 74可以看出因为name字段的len74],在这个基础上使用了age进…

学会字符转换

字符转换 题目描述:解法思路:解法代码:运行结果: 题目描述: 输入⼀一个字符串,将字符串中大写字母全部转为小写字母,小写字母转成大写字母,其他字符保持不变。注:字符串…

pthread_cond_timedwait()函数

绝对时间:相对于1970年1月1日0时0分0秒 相对时间:相对于当前时间,如sleep(3);相对于当前,过3s.