回归预测 | Matlab实现CPO-HKELM冠豪猪算法优化混合核极限学习机多变量回归预测

回归预测 | Matlab实现CPO-HKELM冠豪猪算法优化混合核极限学习机多变量回归预测

目录

    • 回归预测 | Matlab实现CPO-HKELM冠豪猪算法优化混合核极限学习机多变量回归预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现CPO-HKELM冠豪猪算法优化混合核极限学习机多变量回归预测(完整源码和数据)
2.运行环境为Matlab2021b;
3.excel数据集,输入多个特征,输出单个变量,多变量回归预测预测,main.m为主程序,运行即可,所有文件放在一个文件夹;
4.命令窗口输出R2、MAE、 MBE、MAPE、 RMSE多指标评价;
代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式(资源出下载):Matlab实现CPO-HKELM冠豪猪算法优化混合核极限学习机多变量回归预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx','sheet1','A2:H104');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  参数设置
%% 获取最优正则化系数 C 和核函数参数 S 
Kernel_type1 = 'rbf'; %核函数类型1
Kernel_type2 = 'poly'; %核函数类型2%% 适应度函数
fobj=@(X)fobj(X,p_train,t_train,p_test,t_test,Kernel_type1,Kernel_type2);%% 优化算法参数设置
pop=10;
Max_iter=20;
ub=[20 10^(3) 10^(3) 10 1];  %优化的参量分别为:正则化系数C,rbf核函数的核系数S(接下)
lb=[1 10^(-3) 10^(-3) 1 0];  %多项式核函数的两个核系数poly1和poly2,以及核权重系数w
dim=5;
%%  优化算法
[Best_score,Best_P,curve] = RIME(pop, Max_iter, lb, ub, dim, fobj);%% 训练模型
%% 重新训练并进行预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701948.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言------操作符的巧妙使用

1.计算一个数字二进制补码里面1的个数 (1)方法一 根据这个10进制的整数,对这个数进行%10,/10不断地进行下去, %10得到最后一位,/10得到舍去最后一位之后剩余的数; 同理得到:二进…

09 呼吸灯

呼吸灯简介 呼吸灯实际展示的效果就是一个 LED 灯的亮度由亮到暗,再由暗到亮的变化过程,并且该过程是循环往复的,像呼吸一样那么有节奏。 呼吸灯通常是采用 PWM(Pulse Width Modulation,即脉冲宽度调制) 的方式实现,在…

如何使用移动端设备在公网环境远程访问本地黑群晖

文章目录 前言本教程解决的问题是:按照本教程方法操作后,达到的效果是前排提醒: 1. 搭建群晖虚拟机1.1 下载黑群晖文件vmvare虚拟机安装包1.2 安装VMware虚拟机:1.3 解压黑群晖虚拟机文件1.4 虚拟机初始化1.5 没有搜索到黑群晖的解…

C#与VisionPro联合开发——串口通信

串口通信 串口通信是一种常见的数据传输方式,通过串行接口(串口)将数据以串行比特流的形式进行传输。在计算机和外部设备之间,串口通信通常是通过串行通信标准(如RS-232)来实现的。串口通信可以用于连接各…

解析OOM的三大场景,原因及实战解决方案

目录 一、什么是OOM 二、堆内存溢出(Heap OOM) 三、方法区内存溢出(Metaspace OOM) 四、栈内存溢出(Stack OOM) 一、什么是OOM OOM 是 Out Of Memory 的缩写,意思是内存耗尽。在计算机领域…

每日OJ题_牛客JZ39 数组中出现次数超过一半的数字

目录 牛客JZ39 数组中出现次数超过一半的数字 解析代码 牛客JZ39 数组中出现次数超过一半的数字 数组中出现次数超过一半的数字_牛客题霸_牛客网 解析代码 摩尔投票法:摩尔投票法,时间O(N),空间O(1)。 可以理解成混战极限一换一&#xff…

算法沉淀——动态规划之简单多状态 dp 问题(上)(leetcode真题剖析)

算法沉淀——动态规划之简单多状态 dp 问题上 01.按摩师02.打家劫舍 II03.删除并获得点数04.粉刷房子 01.按摩师 题目链接:https://leetcode.cn/problems/the-masseuse-lcci/ 一个有名的按摩师会收到源源不断的预约请求,每个预约都可以选择接或不接。在…

神经网络系列---常用梯度下降算法

文章目录 常用梯度下降算法随机梯度下降(Stochastic Gradient Descent,SGD):随机梯度下降数学公式:代码演示 批量梯度下降(Batch Gradient Descent)批量梯度下降数学公式:代码演示 小…

基于Pytorch的猫狗图片分类【深度学习CNN】

猫狗分类来源于Kaggle上的一个入门竞赛——Dogs vs Cats。为了加深对CNN的理解,基于Pytorch复现了LeNet,AlexNet,ResNet等经典CNN模型,源代码放在GitHub上,地址传送点击此处。项目大纲如下: 文章目录 一、问题描述二、数据集处理…

[HTML]Web前端开发技术29(HTML5、CSS3、JavaScript )JavaScript基础——喵喵画网页

希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,佬佬会看到更多有趣的博客哦!!! 喵喵喵,你对我真的很重要! 目录 前言 上一节的课后练习

docker运行onlyoffice,并配置https访问【参考仅用】

官方说明: Installing ONLYOFFICE Docs for Docker on a local server - ONLYOFFICEhttps://helpcenter.onlyoffice.com/installation/docs-developer-install-docker.aspx 一、容器端口、目录卷映射 sudo docker run --name容器名称 --restartalways -i -t -d -p…

#FPGA(基础知识)

1.IDE:Quartus II 2.设备:Cyclone II EP2C8Q208C8N 3.实验:正点原子-verilog基础知识 4.时序图: 5.步骤 6.代码:

零样本带解释性的医学大模型

带解释性的医学大模型 提出背景解法拆解方法的原因对比以前解法 零样本带解释性的医学大模型如何使用CLIP模型和ChatGPT来进行零样本医学图像分类用特定提示查询ChatGPT所生成的医学视觉特征描述相似性得分在不同症状上的可视化,用于解释模型的预测注意力图的可视化…

公众号回复idea能给出下载链接。

你可以使用字典来存储这些数据,然后在接收到消息时根据消息内容在字典中查找对应的回复内容。 这样做不仅可以更优雅地管理多组数据,还可以轻松地扩展和维护。msg parse_message(message) reply_dict {"idea": "https://pan.baidu.com/…

【数据结构】时间复杂度(加法乘法规则、渐近时间复杂度、循环时间复杂度总结

2.2 时间复杂度 什么是时间复杂度? 评估算法时间开销 T ( n ) O ( f ( n ) ) T(n)O(f(n)) T(n)O(f(n)) 在实际求解中,只留表达式中最高阶的部分,丢弃其他部分。 如何求解? 求解步骤 1.找到一个最深层的基本操作; 2.分…

03|分页查询优化

1. 根据自增且连续的主键排序 使用条件:主键连续且自增 & 结果按照主键排序 select * from employees limit 90000,5;理论上应该走主键索引, 为什么现在type是 all呢? ● 查询第9w行数据开始的5条数据时属于深度分页。 ● limit 90000 5工作原理就是先读取前面…

mac下使用jadx反编译工具

直接执行步骤: 1.创建 jadx目录 mkdir jadx2.将存储库克隆到目录 git clone https://github.com/skylot/jadx.git 3. 进入 jadx目录 cd jadx 4.执行编译 等待片刻 ./gradlew dist出现这个就代表安装好了。 5.最后找到 jadx-gui 可执行文件,双击两下…

C/C++暴力/枚举/穷举题目(刷蓝桥杯基础题的进!)

目录 前言 一、百钱买百鸡 二、百元兑钞 三、门牌号码(蓝桥杯真题) 四、相乘(蓝桥杯真题) 五、卡片拼数字(蓝桥杯真题) 六、货物摆放(蓝桥杯真题) 七、最短路径(蓝…

Unity中URP实现水体效果(泡沫)

文章目录 前言一、给水上色1、我们在属性面板定义两个颜色2、在常量缓冲区申明这两个颜色3、在片元着色器中,使用深度图对这两个颜色进行线性插值,实现渐变的效果 二、实现泡沫效果1、采样 泡沫使用的噪波纹理2、控制噪波效果强弱3、定义_FoamRange来控制…

自定义神经网络二之模型训练推理

文章目录 前言模型概念模型是什么?模型参数有哪些神经网络参数案例 为什么要生成模型模型的大小什么是大模型 模型的训练和推理模型训练训练概念训练过程训练过程中的一些概念 模型推理推理概念推理过程 总结 前言 自定义神经网络一之Tensor和神经网络 通过上一篇…