基于YOLOv5+PySide6的火灾火情火焰检测系统设计深度学习

wx供重浩:创享日记
对话框发送:225火灾
获取完整源码源文件+已标注的数据集(1553张)+配置跑起来说明
可有偿49yuan一对一远程操作,在你电脑跑起来


效果展示:
在这里插入图片描述
​数据集在下载的文件夹:yolov5-5.0\VOCData\images
在这里插入图片描述
在这里插入图片描述

随着城市化进程的加快,火灾安全问题日益突出。为了提高火灾预警的准确性和及时性,本文提出了一种基于YOLOv5(You Only Look Once version 5)的火灾火情检测系统。该系统利用深度学习技术,通过实时视频监控数据,快速准确地识别火情并发出警报。

火灾是威胁公共安全的重要因素之一。传统的火灾检测方法依赖于烟雾探测器和温度传感器,但这些方法在早期火情检测方面存在局限性。本文提出的基于YOLOv5的火灾火情检测系统,旨在通过计算机视觉技术提高火灾检测的效率和准确性。

YOLOv5是一种高效的目标检测算法,它能够在单次前向传播中预测图像中的物体位置和类别。YOLOv5具有速度快、精度高的特点,非常适合实时视频监控场景。

为了训练YOLOv5模型,我们收集了大量的火灾图像数据,并对其进行了标注。通过在这些数据上训练,模型学会了识别火情的特征。在测试阶段,我们使用独立的测试集评估了模型的性能,包括检测准确率、召回率和F1分数。

本设计的具体步骤如下:
(1)数据采集:本次火灾检测数据集由互联网中收集的非机动车道交通情况的数据集组合而成。
(2)数据标注:利用labelimg标注工具对数据集中的火灾火情火焰进行标注,并进行格式转换和划分,得到训练数据集。
(3)模型训练:选用YOLOv5框架训练模型,并使用优化算法对模型进行调参和优化。
(4)实验验证:对不同场景下目标进行实验验证,评估算法的准确性和实时性。并且基于PySide6实现可视化操作界面。

实验结果表明,基于YOLOv5的火灾火情检测系统在实时视频监控中表现出色。与传统方法相比,该系统在火情检测的准确性和响应速度上都有显著提升。此外,系统还能够适应不同的环境光线条件,提高了检测的鲁棒性。

本文提出的基于YOLOv5的火灾火情检测系统,为火灾预警提供了一种新的技术手段。该系统能够实时、准确地检测火情,为火灾防控提供了有力的技术支持。未来的工作将集中在进一步提高模型的泛化能力和降低误报率。

PySide6可视化操作界面源码:

import sys
import cv2
import torch
from PySide6.QtWidgets import QMainWindow, QApplication, QFileDialog
from PySide6.QtGui import QPixmap, QImage
from PySide6.QtCore import QTimer
from main_window import Ui_MainWindowdef convert2QImage(img):height, width, channel = img.shapereturn QImage(img, width, height, width * channel, QImage.Format_RGB888)class MainWindow(QMainWindow, Ui_MainWindow):def __init__(self):super(MainWindow, self).__init__()self.setupUi(self)self.model = torch.hub.load('C:/Users/pc/Desktop/yolov5-5.0', 'custom', 'runs/train/exp2/weights/best.pt', source='local')self.timer = QTimer()self.timer.setInterval(10)self.video = Noneself.bind_slots()def bind_slots(self):self.imgButton.clicked.connect(self.open_image)self.videoButton.clicked.connect(self.open_video)self.timer.timeout.connect(self.video_pred)def image_pred(self, file_path):results = self.model(file_path)image = results.render()[0]return convert2QImage(image)def open_image(self):self.timer.stop()file_path = QFileDialog.getOpenFileName(self, dir="VOCData/images", filter="*.jpg;*.png;*jpeg")if file_path[0]:file_path = file_path[0]qimage = self.image_pred(file_path)self.input.setPixmap(QPixmap(file_path))self.output.setPixmap(QPixmap.fromImage(qimage))def open_video(self):file_path = QFileDialog.getOpenFileName(self, dir="C:/Users/pc/Desktop", filter="*.mp4")if file_path[0]:file_path = file_path[0]self.video = cv2.VideoCapture(file_path)self.timer.start()def video_pred(self):ret, frame = self.video.read()if not ret:self.timer.stop()else:frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)self.input.setPixmap(QPixmap.fromImage(convert2QImage(frame)))results = self.model(frame)image = results.render()[0]self.output.setPixmap(QPixmap.fromImage(convert2QImage(image)))if __name__ == "__main__":app = QApplication(sys.argv)window = MainWindow()window.show()app.exec()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701656.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CRF算法(Conditional Random Fields)揭秘

CRF基本介绍 在机器学习中,建模线性序列结构的方法,除了HMM算法,另一个重要的模型就是CRF。HMM为了降低模型复杂性,对观测变量做了独立假设(即隐状态之间有相关性,而观测变量之间没有相关性),这在某种程度…

单机取证-信息安全管理与评估-2022年国赛真题-环境+wp

🍬 博主介绍 博主介绍:大家好,我是 Mikey ,很高兴认识大家~ 主攻:【应急响应】 【python】 【数字取证】【单机取证】【流量分析】【MISC】 🎉点赞➕评论➕收藏 == 养成习惯(一键三连)😋 🎉欢迎关注💗一起学习👍一起讨论⭐️一起进步 作者水平有限,欢迎各…

HuggingFists系统功能介绍(2)--数据源账号

数据源 再次,我们进入“数据源”管理模块。该模块用于管理我们在进行数据处理或分析时所需要的所有数据源。在定义任何的数据流程读写工作之前,必须先通过数据源管理模块创建出对应的数据源。数据源可以是我们需要进行数据处理时,原始数据所在…

uniapp上传文件到腾讯云

官方API地址 javaScript_SDK 下载cos npm i cos-js-sdk-v5 --save 生成签名 获取secretId和secretKey let cos new COS({SecretId: *******************************,SecretKey: ******************************,}) 参考文章:腾讯云如何获取secretId和secret…

C++中的左值和右值

目录 一. 左值和右值的概念 1. 左值 1.1 可修改的的左值 1.2 不可修改的左值 右值 二. 左值引用和右值引用 1. 左值引用 2. 右值引用 主要用途 1. 移动语义 2. 完美转发 2.1 引用折叠 2.2 std::forward 一. 左值和右值的概念 什么是左值和右值 1. 左值 左值是一个表示…

Linux内核源码安装

文章目录 前言查看内核源码包安装内核源码编译内核源码最后 前言 我是醉墨居士,我们安装一下Linux内核源码,方便我们学习Linux内核 也方便我们进行eBPF开发时查看Linux内核的一些信息 查看内核源码包 apt-cache search linux-source安装内核源码 因为…

【vue3语法】开发使用创建项目等

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、vue3创建vue3v2函数式、v3组合式api响应式方法ref、reactive计算属性conputed监听属性wacthvue3 选项式生命周期父子通信父传子defineProps编译宏 子传父de…

互联网加竞赛 机器视觉opencv答题卡识别系统

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 答题卡识别系统 - opencv python 图像识别 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分…

并查集例题(食物链)C++(Acwing)

代码&#xff1a; #include <iostream>using namespace std;const int N 50010;int n, m; int p[N], d[N];int find(int x) {if(p[x] ! x){int t find(p[x]);d[x] d[p[x]];p[x] t;}return p[x]; }int main() {scanf("%d%d", &n, &m);for(int i 1…

linux前端部署

安装jdk 配置环境变量 刷新配置文件 source profile source /etc/profile tomcat 解压文件 进去文件启动tomcat 开放tomcat的端口号 访问 curl localhsot:8080 改配置文件 改IP,改数据库名字&#xff0c;密码&#xff0c; 安装数据库 将war包拖进去 访问http:…

【Python笔记-设计模式】代理模式

一、说明 代理模式是一种结构型设计模式&#xff0c;提供对象的替代品或其占位符。代理控制着对于原对象的访问&#xff0c;并允许在将请求提交给对象前后进行一些处理。 (一) 解决问题 控制对对象的访问&#xff0c;或在访问对象前增加额外的功能或控制访问 (二) 使用场景…

apidoc接口文档的自动更新与发布

文章目录 一、概述二、环境准备三、接口文档生成1. 下载源码2. 初始化3.执行 四、文档发布五&#xff0c;配置定时运行六&#xff0c;docker运行七&#xff0c;不足与优化分析 一、概述 最近忙于某开源项目的接口文档整理&#xff0c;采用了apidoc来整理生成接口文档。 apidoc…

深度学习系列59:文字识别

1. 简单文本&#xff1a; 使用google加的tesseract&#xff0c;效果不错。 首先安装tesseract&#xff0c;在mac直接brew install即可。 python调用代码&#xff1a; import pytesseract from PIL import Image img Image.open(1.png) pytesseract.image_to_string(img, lan…

MES管理系统生产过程控制的核心要素

MES&#xff08;制造执行系统&#xff09;是为优化制造业生产过程和管理而设计的软件系统&#xff0c;其核心要素包括&#xff1a; 工单管理&#xff1a;工单管理是MES系统最基本的功能之一&#xff0c;它可以跟踪和管理各种类型的工单&#xff0c;如生产工单、维修工单和质量…

Spring篇----第六篇

系列文章目录 文章目录 系列文章目录前言一、spring 支持集中 bean scope?二、spring bean 容器的生命周期是什么样的?三、什么是 spring 的内部 bean?前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男…

Java EE改名Jakarta EE,jakarta对程序开发的影响

一、前言 很多Java程序员在使用新版本的Spring6或者springboot3版本的时候&#xff0c;发现了一些叫jakarta的包。我在阅读开源工作流引擎camunda源代码的时候&#xff0c;也发展了大量jakarta的工程包。 比如&#xff1a;camunda的webapps编译工程就提供了2种方式javax和jaka…

SCI一区 | Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络融合多头自注意力机制的多特征分类预测

SCI一区 | Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络融合多头自注意力机制的故障多特征分类预测 目录 SCI一区 | Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络融合多头自注意力机制的故障多特征分类预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍…

论文阅读:Ground-Fusion: A Low-cost Ground SLAM System Robust to Corner Cases

前言 最近看到一篇ICRA2024上的新文章&#xff0c;是关于多传感器融合SLAM的&#xff0c;好像使用了最近几年文章中较火的轮式里程计。感觉这篇文章成果不错&#xff0c;代码和数据集都是开源的&#xff0c;今天仔细读并且翻译一下&#xff0c;理解创新点、感悟研究方向、指导…

【杂谈】还能这么骗Github开源者?

起因 StarkNet给Github前5000的账户空投了一波STRK代币,一般有资格获得空投的开发者&#xff0c;大概能获得 110个 STRK 代币&#xff0c;按目前价格计算大概 1500人民币左右。 什么是有资格的开发者呢&#xff1f;按 Starknet要求&#xff0c;如果你给在 GitHub上排名前 5000…

基于SSM的废品买卖回收管理系统(有报告)。Javaee项目。ssm项目。

演示视频&#xff1a; 基于SSM的废品买卖回收管理系统&#xff08;有报告&#xff09;。Javaee项目。ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0c;通过Spri…