矩阵的导数运算(理解分子布局、分母布局)

矩阵的导数运算(理解分子布局、分母布局)

1、分子布局和分母布局

请思考这样一个问题,一个维度为m的向量y对一个标量x的求导,那么结果也是一个m维的向量,那么这个结果向量是行向量,还是列向量呢?

答案是:行向量或者列向量皆可! 求导的本质只是把标量求导的结果排列起来,至于是按行排列还是按列排列都是可以的。但是这样也有问题,在我们机器学习算法优化过程中,如果行向量或者列向量随便写,那么结果就不唯一,乱套了。

为了解决矩阵向量求导的结果不唯一,我们引入求导布局。最基本的求导布局有两个:分子布局(numerator layout)和分母布局(denominator layout )。

  • 对于分子布局来说,我们求导结果的维度以分子为主

  • 对于分母布局来说,我们求导结果的维度以分母为主

2、标量方程对向量的导数

标量方程中的未知量是标量,而不是矢量或矩阵。

通常情况下,标量方程可以是各种类型的代数方程,包括线性方程、二次方程、多项式方程等。这些方程中的未知量都是标量,通常表示为一个变量,例如 x、y、z 等。
已知标量方程 f ( y ) = f ( y 1 , y 2 , . . . , y m ) ,我们求解标量方程 f ( y ) 对向量 y → = ( y 1 y 2 ⋮ y m ) 的导数 已知标量方程f(y) = f(y_1,y_2,...,y_m),我们求解标量方程f(y) 对向量\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right)的导数 \\ 已知标量方程f(y)=f(y1,y2,...,ym),我们求解标量方程f(y)对向量y = y1y2ym 的导数
在这里插入图片描述

分母为向量y,维度为m×1,求导结果的行数和分母相同,都为m,因此为分母布局。

分子为标量,维度为1×1,求导结果的行数和分子相同,都为1,因此为分子布局。

具体案例如下:
已知标量方程 f ( y ) = y 1 2 + y 2 2 ,我们求解标量方程 f ( y ) 对向量 y → = ( y 1 y 2 ) 的导数 按照分母布局 ( 行数和分母相同 ) ,则 ∂ f ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ) = ( 2 y 1 2 y 2 ) 按照分子布局 ( 行数和分子相同 ) ,则 ∂ f ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 , ∂ f ( y → ) ∂ y 2 ) = ( 2 y 1 , 2 y 2 ) 已知标量方程f(y) = y_1^2 + y_2^2,我们求解标量方程f(y) 对向量\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \end{matrix} \right)的导数 \\ 按照分母布局(行数和分母相同),则\frac{\partial{f(\overrightarrow{y})}}{\partial{\overrightarrow{y}}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \end{matrix} \right)=\left( \begin{matrix} 2y_1 \\ 2y_2 \\ \end{matrix} \right)\\ 按照分子布局(行数和分子相同),则\frac{\partial{f(\overrightarrow{y})}}{\partial{\overrightarrow{y}}}=(\frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}},\frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}})=(2y_1, 2y_2) 已知标量方程f(y)=y12+y22,我们求解标量方程f(y)对向量y =(y1y2)的导数按照分母布局(行数和分母相同),则y f(y )=(y1f(y )y2f(y ))=(2y12y2)按照分子布局(行数和分子相同),则y f(y )=(y1f(y ),y2f(y ))=(2y1,2y2)
注意:分子布局结果和分母布局结果互为转置。

3、向量方程对向量的导数

3.1 公式

已知 y → = ( y 1 y 2 ⋮ y m ) ,求向量方程 f → ( y → ) = ( f 1 ( y → ) f 2 ( y → ) ⋮ f n ( y → ) ) 对 y → 的导数 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),求向量方程\overrightarrow{f}(\overrightarrow{y})=\left( \begin{matrix} f_1(\overrightarrow{y}) \\ f_2(\overrightarrow{y}) \\ \vdots \\ f_n(\overrightarrow{y}) \\ \end{matrix} \right)对\overrightarrow{y}的导数\\ 已知y = y1y2ym ,求向量方程f (y )= f1(y )f2(y )fn(y ) y 的导数

利用分母布局:
∂ f → ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ⋮ ∂ f ( y → ) ∂ y m ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 1 ⋯ ∂ f n ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ∂ f 2 ( y → ) ∂ y 2 ⋯ ∂ f n ( y → ) ∂ y 2 ⋮ ⋮ ⋱ ⋮ ∂ f 1 ( y → ) ∂ y m ∂ f 2 ( y → ) ∂ y m ⋯ ∂ f n ( y → ) ∂ y m ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \vdots \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \cdots &\frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_1}}\\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_m}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_m}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right)\\ y f (y )= y1f(y )y2f(y )ymf(y ) = y1f1(y )y2f1(y )ymf1(y )y1f2(y )y2f2(y )ymf2(y )y1fn(y )y2fn(y )ymfn(y )
利用分子布局:

∂ f → ( y → ) ∂ y → = ( ∂ f 1 ( y → ) ∂ y → ∂ f 2 ( y → ) ∂ y → ⋮ ∂ f n ( y → ) ∂ y → ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ⋯ ∂ f 1 ( y → ) ∂ y m ∂ f 2 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 2 ⋯ ∂ f 2 ( y → ) ∂ y m ⋮ ⋮ ⋱ ⋮ ∂ f n ( y → ) ∂ y 1 ∂ f n ( y → ) ∂ y 2 ⋯ ∂ f n ( y → ) ∂ y m ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \frac{\partial{f_2(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \vdots \\ \frac{\partial{f_n(\overrightarrow{y})}}{\partial{\overrightarrow{y}}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \cdots &\frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_m}}\\ \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_m}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_2}} &\cdots& \frac{\partial{f_n(\overrightarrow{y})}}{\partial{y_m}} \\ \end{matrix} \right) y f (y )= y f1(y )y f2(y )y fn(y ) = y1f1(y )y1f2(y )y1fn(y )y2f1(y )y2f2(y )y2fn(y )ymf1(y )ymf2(y )ymfn(y )

3.2 具体示例

已知 y → = ( y 1 y 2 y 3 ) ,求向量方程 f → ( y → ) = ( f 1 ( y → ) f 2 ( y → ) ) = ( y 1 2 + y 2 2 + y 3 y 3 2 + 2 y 1 ) 对 y → 的导数 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ y_{3} \\ \end{matrix} \right),求向量方程\overrightarrow{f}(\overrightarrow{y})=\left( \begin{matrix} f_1(\overrightarrow{y}) \\ f_2(\overrightarrow{y}) \\ \end{matrix} \right)=\left( \begin{matrix} y_1^2+y_2^2+y_3 \\ y_3^2+2y_1 \\ \end{matrix} \right) 对\overrightarrow{y}的导数\\ 已知y = y1y2y3 ,求向量方程f (y )=(f1(y )f2(y ))=(y12+y22+y3y32+2y1)y 的导数

我们按照分母布局来求(得到结果为m×n的矩阵,即3×2):
∂ f → ( y → ) ∂ y → = ( ∂ f ( y → ) ∂ y 1 ∂ f ( y → ) ∂ y 2 ∂ f ( y → ) ∂ y 3 ) = ( ∂ f 1 ( y → ) ∂ y 1 ∂ f 2 ( y → ) ∂ y 1 ∂ f 1 ( y → ) ∂ y 2 ∂ f 2 ( y → ) ∂ y 2 ∂ f 1 ( y → ) ∂ y 3 ∂ f 2 ( y → ) ∂ y 3 ) = ( 2 y 1 2 2 y 2 0 1 2 y 3 ) \frac{\partial{\overrightarrow{f}(\overrightarrow{y})}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{f(\overrightarrow{y})}}{\partial{y_1}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_2}} \\ \frac{\partial{f(\overrightarrow{y})}}{\partial{y_3}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_1}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_1}} & \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_2}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_2}} & \\ \frac{\partial{f_1(\overrightarrow{y})}}{\partial{y_3}} & \frac{\partial{f_2(\overrightarrow{y})}}{\partial{y_3}} & \\ \end{matrix} \right)=\left( \begin{matrix} 2y_1 & 2 & \\ 2y_2 & 0 & \\ 1 & 2y_3 & \\ \end{matrix} \right)\\ y f (y )= y1f(y )y2f(y )y3f(y ) = y1f1(y )y2f1(y )y3f1(y )y1f2(y )y2f2(y )y3f2(y ) = 2y12y21202y3

3.3 常用特例

常用特例1:
已知 y → = ( y 1 y 2 ⋮ y m ) ,方阵 A = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) , 证明 ∂ A y → ∂ y → = A T , ∂ y T → A ∂ y → = A ( 分母布局 ) 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),方阵A=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right),证明\frac{\partial{A\overrightarrow{y}}}{\partial\overrightarrow{y}}=A^T, \frac{\partial{\overrightarrow{y^T}}A}{\partial\overrightarrow{y}}=A(分母布局) 已知y = y1y2ym ,方阵A= a11a21am1a12a22am2a1ma2mamm ,证明y Ay =ATy yT A=A(分母布局)
我们使用分母布局来求
A y → = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) . ( y 1 y 2 ⋮ y m ) = ( a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ⋮ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ) 按照分母布局,我们可以得到: ∂ A y → ∂ y → = ( ∂ A y → ∂ y 1 ∂ A y → ∂ y 2 ⋮ ∂ A y → ∂ y m ) = ( a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y 1 a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y 1 ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y 1 a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y 2 a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y 2 ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y 2 ⋮ ⋮ ⋱ ⋮ a 11 y 1 + a 12 y 2 + ⋯ + a 1 m y m ∂ y m a 21 y 1 + a 22 y 2 + ⋯ + a 2 m y m ∂ y m ⋯ a m 1 y 1 + a m 2 y 2 + ⋯ + a m m y m ∂ y m ) = ( a 11 a 21 ⋯ a m 1 a 12 a 22 ⋯ a m 2 ⋮ ⋮ ⋱ ⋮ a 1 m a 2 m ⋯ a m m ) = A T A\overrightarrow{y}=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right). \left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right)=\left( \begin{matrix} a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m\\ a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m\\ \vdots \\ a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m\\ \end{matrix} \right)\\ 按照分母布局,我们可以得到:\\ \frac{\partial{A\overrightarrow{y}}}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{\partial{A\overrightarrow{y}}}{\partial{y_1}} \\ \frac{\partial{A\overrightarrow{y}}}{\partial{y_2}} \\ \vdots \\ \frac{\partial{A\overrightarrow{y}}}{\partial{y_m}} \\ \end{matrix} \right)=\left( \begin{matrix} \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_1}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_1}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_1}} \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_2}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_2}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{1m}y_m}{\partial{y_m}} & \frac{a_{21}y_1 + a_{22}y_2 + \cdots + a_{2m}y_m}{\partial{y_m}} & \cdots & \frac{a_{m1}y_1 + a_{m2}y_2 + \cdots + a_{mm}y_m}{\partial{y_m}} \\ \end{matrix} \right)\\ =\left( \begin{matrix} a_{11} & a_{21} & \cdots & a_{m1}\\ a_{12} & a_{22} & \cdots & a_{m2}\\ \vdots & \vdots & \ddots & \vdots \\ a_{1m} & a_{2m} & \cdots & a_{mm}\\ \end{matrix} \right)=A^T\\ Ay = a11a21am1a12a22am2a1ma2mamm . y1y2ym = a11y1+a12y2++a1myma21y1+a22y2++a2mymam1y1+am2y2++ammym 按照分母布局,我们可以得到:y Ay = y1Ay y2Ay ymAy = y1a11y1+a12y2++a1mymy2a11y1+a12y2++a1mymyma11y1+a12y2++a1mymy1a21y1+a22y2++a2mymy2a21y1+a22y2++a2mymyma21y1+a22y2++a2mymy1am1y1+am2y2++ammymy2am1y1+am2y2++ammymymam1y1+am2y2++ammym = a11a12a1ma21a22a2mam1am2amm =AT

同理,我们知道 y T → A = ( y 1 , y 2 , ⋯ , y m ) . ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) = ( a 11 y 1 + a 21 y 2 + ⋯ + a m 1 y m a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ⋮ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ) ∂ y T → A ∂ y → = ( a 11 y 1 + a 21 y 2 + ⋯ + a m 1 y m ∂ y 1 a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y 1 ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y 1 a 11 y 1 + a 12 y 2 + ⋯ + a m 1 y m ∂ y 2 a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y 2 ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y 2 ⋮ ⋮ ⋱ ⋮ a 11 y 1 + a 12 y 2 + ⋯ + a m 1 y m ∂ y m a 12 y 1 + a 22 y 2 + ⋯ + a m 2 y m ∂ y m ⋯ a 1 m y 1 + a 2 m y 2 + ⋯ + a m m y m ∂ y m ) = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) = A 同理,我们知道\overrightarrow{y^T}A=(y_1,y_2,\cdots,y_m).\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right)=\left( \begin{matrix} a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m\\ a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m\\ \vdots \\ a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m\\ \end{matrix} \right)\\ \frac{\partial{\overrightarrow{y^T}}A}{\partial\overrightarrow{y}}=\left( \begin{matrix} \frac{a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m}{\partial{y_1}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_1}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_1}} \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{m1}y_m}{\partial{y_2}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_2}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_2}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{11}y_1 + a_{12}y_2 + \cdots + a_{m1}y_m}{\partial{y_m}} & \frac{a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m}{\partial{y_m}} & \cdots & \frac{a_{1m}y_1 + a_{2m}y_2 + \cdots + a_{mm}y_m}{\partial{y_m}} \\ \end{matrix} \right)\\ =\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right)=A 同理,我们知道yT A=(y1,y2,,ym). a11a21am1a12a22am2a1ma2mamm = a11y1+a21y2++am1yma12y1+a22y2++am2yma1my1+a2my2++ammym y yT A= y1a11y1+a21y2++am1ymy2a11y1+a12y2++am1ymyma11y1+a12y2++am1ymy1a12y1+a22y2++am2ymy2a12y1+a22y2++am2ymyma12y1+a22y2++am2ymy1a1my1+a2my2++ammymy2a1my1+a2my2++ammymyma1my1+a2my2++ammym = a11a21am1a12a22am2a1ma2mamm =A

常用特例2:
已知 y → = ( y 1 y 2 ⋮ y m ) ,方阵 A = ( a 11 a 12 ⋯ a 1 m a 21 a 22 ⋯ a 2 m ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m m ) , 证明 ∂ y → T A y → ∂ y → = A y → + A T y → ( 分母布局 ) 另外,当 A 对称时, A T = A , 左式 = 2 A y → 已知\overrightarrow{y}=\left( \begin{matrix} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \\ \end{matrix} \right),方阵A=\left( \begin{matrix} a_{11} & a_{12} & \cdots & a_{1m}\\ a_{21} & a_{22} & \cdots & a_{2m}\\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm}\\ \end{matrix} \right),证明\frac{\partial{\overrightarrow{y}^TA\overrightarrow{y}}}{\partial\overrightarrow{y}}=A\overrightarrow{y} + A^T\overrightarrow{y}(分母布局)\\ 另外,当A对称时,A^T=A,左式=2A\overrightarrow{y} 已知y = y1y2ym ,方阵A= a11a21am1a12a22am2a1ma2mamm ,证明y y TAy =Ay +ATy (分母布局)另外,当A对称时,AT=A,左式=2Ay
我们A为2阶方阵,那么:

在这里插入图片描述

我们再利用分母布局:

在这里插入图片描述

3.4 利用常用特例求解线性回归的解析解

线性回归可以用 y = X w + b 进行表示 我们将偏置 b 合并到参数 w 中,合并⽅法是在包含所有参数的矩阵中附加⼀列 那么,线性回归的代价函数可以表示为: E w = ( y − X w ) T ( y − X w ) = ( y T − w T X ) ( y − X w ) = y T y − y T X w − w T X T y + w T X T X w 因此 ∂ E w ∂ W = ∂ ( y T y ) ∂ w − ∂ ( y T X w ) ∂ w − ∂ ( w T X T y ) ∂ w + ∂ ( w T X T X w ) ∂ w = 0 − X T y ( 常用特例 1 ) − X T y ( 常用特例 1 ) + 2 X T X w ( 常用特例 2 , X T X 为对称阵 ) = 2 X T X w − 2 X T y 我们将损失关于 w 的导数设置为 0 ,那么可以得到解析解: w = ( X T X ) − 1 X T y 线性回归可以用y=Xw+b进行表示\\ 我们将偏置b合并到参数w中,合并⽅法是在包含所有参数的矩阵中附加⼀列\\ 那么,线性回归的代价函数可以表示为:\\ E_w=(y-Xw)^T(y-Xw) \\ =(y^T-w^TX)(y-Xw) \\ =y^Ty-y^TXw-w^TX^Ty+w^TX^TXw \\ 因此\frac{\partial{E_w}}{\partial{W}}= \frac{\partial{(y^Ty)}}{\partial{w}}- \frac{\partial{(y^TXw)}}{\partial{w}}- \frac{\partial{(w^TX^Ty)}}{\partial{w}}+ \frac{\partial{(w^TX^TXw)}}{\partial{w}}\\ =0-X^Ty(常用特例1)-X^Ty(常用特例1)+2X^TXw(常用特例2,X^TX为对称阵)\\ =2X^TXw-2X^Ty \\ 我们将损失关于w的导数设置为0,那么可以得到解析解:w=(X^TX)^{-1}X^Ty 线性回归可以用y=Xw+b进行表示我们将偏置b合并到参数w中,合并法是在包含所有参数的矩阵中附加那么,线性回归的代价函数可以表示为:Ew=(yXw)T(yXw)=(yTwTX)(yXw)=yTyyTXwwTXTy+wTXTXw因此WEw=w(yTy)w(yTXw)w(wTXTy)+w(wTXTXw)=0XTy(常用特例1)XTy(常用特例1)+2XTXw(常用特例2XTX为对称阵)=2XTXw2XTy我们将损失关于w的导数设置为0,那么可以得到解析解:w=(XTX)1XTy

4、向量求导的链式法则

举例证明链式求导法则为: ∂ J ∂ u → = ∂ y → ( u → ) ∂ u → . ∂ J ∂ y → ( u → ) 举例证明链式求导法则为:\frac{\partial{J}}{\partial{\overrightarrow{u}}}=\frac{\partial{\overrightarrow{y}(\overrightarrow{u})}}{\partial{\overrightarrow{u}}}.\frac{\partial{J}}{\partial{\overrightarrow{y}(\overrightarrow{u})}} 举例证明链式求导法则为:u J=u y (u ).y (u )J

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/701049.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring及工厂模式概述

文章目录 Spring 身世什么是 Spring什么是设计模式工厂设计模式什么是工厂设计模式简单的工厂设计模式通用的工厂设计 总结 在 Spring 框架出现之前,Java 开发者使用的主要是传统的 Java EE(Java Enterprise Edition)平台。Java EE 是一套用于…

《Docker 简易速速上手小册》第3章 Dockerfile 与镜像构建(2024 最新版)

文章目录 3.1 编写 Dockerfile3.1.1 重点基础知识3.1.2 重点案例:创建简单 Python 应用的 Docker 镜像3.1.3 拓展案例 1:Dockerfile 优化3.1.4 拓展案例 2:多阶段构建 3.2 构建流程深入解析3.2.1 重点基础知识3.2.2 重点案例:构建…

港科夜闻|香港科大计划建立北部都会区卫星校园完善科大创新带,发展未来创新科技 未来医药发展及跨学科教育...

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、香港科大计划建立北部都会区卫星校园完善“科大创新带”,发展未来创新科技、未来医药发展及跨学科教育。香港科大校长叶玉如教授在2月22日的媒体会议上表示,香港科大将在北部都会区建立卫星校园&a…

open3d KD-Tree K近邻点搜索

open3d KD-Tree K近邻点搜索 一、算法原理1.KD-Tree 介绍2.原理 二、代码三、结果1.原点云2.k近邻点搜索后的点云 四、相关数据 一、算法原理 1.KD-Tree 介绍 kd 树或 k 维树是计算机科学中使用的一种数据结构,用于在具有 k 维的空间中组织一定数量的点。它是一个…

【Spring MVC】处理器映射器:AbstractHandlerMethodMapping源码分析

目录 一、继承体系 二、HandlerMapping 三、AbstractHandlerMapping 四、AbstractHandlerMethodMapping 4.1 成员属性 4.1.1 MappingRegistry内部类 4.2 AbstractHandlerMethodMapping的初始化 4.3 getHandlerInternal()方法:根据当前的请求url,…

从git上clone项目到本地后启动时的一种报错

当我们从git上拉项目到本地之后,先install,但启动时可能会出现报错,例如上面这种报错,这时候我们需要把package.json里的vite改一下,例如改成2.6.13,之后删掉node_modules,重新install,再启动一下,就好了。…

OT 安全解决方案:探索技术

IT 和 OT 安全的融合:更好的防御方法 OT 安全解决方案下一个时代: 为了应对不断升级的威胁形势,组织认识到迫切需要采用统一的信息技术 (IT) 和运营技术 (OT) 安全方法。IT 和 OT 安全的融合代表了一种范式转变,承认这些传统孤立领…

音频smmu问题之smmu学习

一、音频smmu 内存访问问题 在工作中,遇到一个smmu问题,主要log信息如下: arm-smmu 15000000.apps-smmu: Unhandled arm-smmu context fault from soc:spf_core_platform:qcom,msm-audio-ion! arm-smmu 15000000.apps-smmu: FAR 0x0000000…

什么是负载均衡集群?

目录 1、集群是什么? 2、负载均衡集群技术 3、负载均衡集群技术的实现 4、实现效果如图 5、负载均衡分类 6、四层负载均衡(基于IP端口的负载均衡) 7、七层的负载均衡(基于虚拟的URL或主机IP的负载均衡) 8、四层负载与七层…

(3)(3.6) 用于OpenTX的Yaapu遥测脚本

文章目录 前言 1 安装和操作 2 参数说明 前言 这是一个开源 LUA 脚本,用于在使用 OpenTX 2.2.3 的 Horus X10、X12、Jumper T16、T18、Radiomaster TX16S、Taranis X9D、X9E、QX7 和 Jumper T12 无线电设备上显示 FrSky 的直通遥测数据(FrSky passthrough telem…

Linux配置jdk、tomcat、mysql离线安装与启动

目录 1.jdk安装 2.tomcat的安装(开机自启动) 3.MySQL的安装 4.连接项目 1.jdk安装 上传jdk安装包 jdk-8u151-linux-x64.tar.gz 进入opt目录,将安装包拖进去 解压安装包 这里需要解压到usr/local目录下,在这里我新建一个文件夹…

【Vue3】学习computed计算属性

💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢…

NXP实战笔记(十):S32K3xx基于RTD-SDK在S32DS上配置CAN通信

目录 1、概述 2、SDK配置 2.1、配置目标 2.2、CAN配置 3、代码实现 4、测试结果 1、概述 S32K3xx的FlexCan与之前的S32K1xx很相似,Can的中断掩码寄存器(IMASK3)与中断标志位寄存器(IFLAG3)依赖于邮箱数。 FlexCan配置实例如下 FlexCan的整体图示如下 Protocol Engine…

PyTorch概述(六)---View

Tensor.view(*shape)-->Tensor 返回一个新的张量同之前的张量具有相同的数据,但是具有不同的形状;返回的张量同之前的张量共享相同的数据,必须具有相同数目的元素,可能具有不同的形状;对于经过view操作的张量&…

Python中操作MySQL和SQL Server数据库的基础与实战【第97篇—MySQL数据库】

Python中操作MySQL和SQL Server数据库的基础与实战 在Python中,我们经常需要与各种数据库进行交互,其中MySQL和SQL Server是两个常见的选择。本文将介绍如何使用pymysql和pymssql库进行基本的数据库操作,并通过实际代码示例来展示这些操作。…

Visual Studio:Entity设置表之间的关联关系

1、选择表并右键-》新增-》关联 2、设置关联的表及关联关系并“确定”即可

真的是性能优化(压测)-纯思想

文章目录 概要优化指标-MD都是文字看看就行性能优化操作1、代码优化:2、系统配置与环境优化:3、架构与设计:4、~~实施与监控:~~5、~~开发流程和环境管理:~~ 总结 概要 性能优化是一个持续的过程,需要监控、…

神经网络系列---感知机(Neuron)

文章目录 感知机(Neuron)感知机(Neuron)的决策函数可以表示为:感知机(Neuron)的学习算法主要包括以下步骤:感知机可以实现逻辑运算中的AND、OR、NOT和异或(XOR)运算。 感知机(Neuron) 感知机(Neuron)是一种简单而有效的二分类算法,用于将输入…

android input命令支持多指触摸成果展示-千里马framework实战开发

hi input命令扩展提示部分 generic_x86_64:/ # input -h Error: Unknown command: -h Usage: input [<source>] <command> [<arg>...]The source…

数智化转型的三大关键点

一、重新认识数智化转型 消费红利时代&#xff0c;伴随中国宏观经济向好发展&#xff0c;相当一部分企业可以轻松实现快速增长&#xff0c;如同搭乘了一架高速运转的电梯一路飞升。然而&#xff0c;随着宏观经济增速放缓&#xff0c;时代的电梯逐渐失去效力&#xff0c;中国商…