有意向获取代码,请转文末观看代码获取方式~
展示出图效果
1 RLMD分解算法
RLMD(Robust Local Mode Decomposition)是一种鲁棒的局部模态分解方法。它是通过在局部区间内对信号进行多项式拟合,提取局部特征,进而分解信号为多个局部模态函数的和。RLMD的主要步骤如下:
-
将原始信号分段,对每个局部区间内的信号进行多项式拟合,得到该局部区间的局部趋势。
-
将原始信号减去该局部区间的局部趋势,得到该局部区间内的局部振动模式。
-
对每个局部振动模式,重复步骤1和2,直到该局部振动模式变为平稳信号,得到该局部区间内的局部模态函数。
-
将所有局部区间内的局部模态函数相加,得到原始信号的 RLMD 分解。 RLMD 分解具有对噪声和异常值的鲁棒性,能够更准确地分解信号。同时,RLMD 还能够处理非平稳信号,具有较好的局部性和自适应性。因此,RLMD 在信号处理、图像处理和模式识别等领域也得到了广泛的应用。
关于简短的代码视频教程均可关注B站、小红书、知乎同名账号(Lwcah)观看教程~
MATLAB 信号分解第九期-RLMD 分解开源 MATLAB 代码请转:
信号分解全家桶详情请参见:
2 FFT傅里叶频谱变换算法
傅里叶变换是一种数学方法,用于将一个信号分解成一系列正弦和余弦函数的和,从而更好地理解和处理信号。傅里叶变换在信号处理领域有着广泛的应用,包括音频处理、图像处理等。 具体来说,傅里叶变换的步骤如下:
-
给定一个连续时间域函数f(t),其中t为时间。
-
对f(t)进行傅里叶变换,得到它的频率域表示F(ω),其中ω为角频率。
-
F(ω)表示了f(t)中所有频率分量的幅度和相位信息。
-
将F(ω)分解成一系列正弦和余弦函数的和,即: F(ω) = ∑[a(k)cos(kω) + b(k)sin(kω)] 其中,k为频率分量的序号,a(k)和b(k)分别为对应的正弦和余弦函数的系数。 傅里叶变换的优点是可以将时间域中的信号转换成频率域中的信号,从而更好地理解信号的频率分量和周期性特征,同时也方便进行一些信号处理任务,例如滤波、降噪等。缺点是傅里叶变换需要对整个信号进行处理,计算量较大,在实时处理等场景下可能会存在较大的延迟。
MATLAB | 频谱分析算法 | 傅里叶变换 开源 MATLAB 代码请转:
MATLAB | 9种频谱分析算法全家桶详情请参见:
3 RLMD信号分解+FFT傅里叶频谱变换组合算法
如下为简短的视频操作教程。
【MATLAB 】 RLMD信号分解+FFT傅里叶频谱变换组合算法请转:
【MATLAB 】信号分解+FFT傅里叶频谱变换组合算法全家桶详情请参见:
关于代码有任何疑问,可以一起探讨科研,写作,代码等诸多学术问题,我们一起进步~
代码见附件