【深度学习笔记】3_4 逻辑回归之softmax-regression

3.4 softmax回归

Softmax回归(Softmax Regression),也称为多类逻辑回归(Multinomial Logistic Regression),是一种用于多分类问题的分类算法。虽然名字里面带回归,实际上是分类。

前几节介绍的线性回归模型适用于输出为连续值的情景。在另一类情景中,模型输出可以是一个像图像类别这样的离散值。对于这样的离散值预测问题,我们可以使用诸如softmax回归在内的分类模型。和线性回归不同,softmax回归的输出单元从一个变成了多个,且引入了softmax运算使输出更适合离散值的预测和训练。本节以softmax回归模型为例,介绍神经网络中的分类模型。

(在本笔记中softmax regression的算法思想描述得比较详细,但是没有机器学习基础的同学对前面的概念可能会觉得有点模糊,建议参考深度学习之Softmax回归辅助理解)

3.4.1 分类问题

让我们考虑一个简单的图像分类问题,其输入图像的高和宽均为2像素,且色彩为灰度。这样每个像素值都可以用一个标量表示。我们将图像中的4像素分别记为 x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 x1,x2,x3,x4。假设训练数据集中图像的真实标签为狗、猫或鸡(假设可以用4像素表示出这3种动物),这些标签分别对应离散值 y 1 , y 2 , y 3 y_1, y_2, y_3 y1,y2,y3

我们通常使用离散的数值来表示类别,例如 y 1 = 1 , y 2 = 2 , y 3 = 3 y_1=1, y_2=2, y_3=3 y1=1,y2=2,y3=3。如此,一张图像的标签为1、2和3这3个数值中的一个。虽然我们仍然可以使用回归模型来进行建模,并将预测值就近定点化到1、2和3这3个离散值之一,但这种连续值到离散值的转化通常会影响到分类质量。因此我们一般使用更加适合离散值输出的模型来解决分类问题。

3.4.2 softmax回归模型

softmax回归跟线性回归一样将输入特征与权重做线性叠加。与线性回归的一个主要不同在于,softmax回归的输出值个数等于标签里的类别数。因为一共有4种特征和3种输出动物类别,所以权重包含12个标量(带下标的 w w w)、偏差包含3个标量(带下标的 b b b),且对每个输入计算 o 1 , o 2 , o 3 o_1, o_2, o_3 o1,o2,o3这3个输出:

o 1 = x 1 w 11 + x 2 w 21 + x 3 w 31 + x 4 w 41 + b 1 , o 2 = x 1 w 12 + x 2 w 22 + x 3 w 32 + x 4 w 42 + b 2 , o 3 = x 1 w 13 + x 2 w 23 + x 3 w 33 + x 4 w 43 + b 3 . \begin{aligned} o_1 &= x_1 w_{11} + x_2 w_{21} + x_3 w_{31} + x_4 w_{41} + b_1,\\ o_2 &= x_1 w_{12} + x_2 w_{22} + x_3 w_{32} + x_4 w_{42} + b_2,\\ o_3 &= x_1 w_{13} + x_2 w_{23} + x_3 w_{33} + x_4 w_{43} + b_3. \end{aligned} o1o2o3=x1w11+x2w21+x3w31+x4w41+b1,=x1w12+x2w22+x3w32+x4w42+b2,=x1w13+x2w23+x3w33+x4w43+b3.

图3.2用神经网络图描绘了上面的计算。softmax回归同线性回归一样,也是一个单层神经网络。由于每个输出 o 1 , o 2 , o 3 o_1, o_2, o_3 o1,o2,o3的计算都要依赖于所有的输入 x 1 , x 2 , x 3 , x 4 x_1, x_2, x_3, x_4 x1,x2,x3,x4,softmax回归的输出层也是一个全连接层。

在这里插入图片描述

既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值 o i o_i oi当作预测类别是 i i i的置信度,并将值最大的输出所对应的类作为预测输出,即输出 arg ⁡ max ⁡ i o i \underset{i}{\arg\max} o_i iargmaxoi。例如,如果 o 1 , o 2 , o 3 o_1,o_2,o_3 o1,o2,o3分别为 0.1 , 10 , 0.1 0.1,10,0.1 0.1,10,0.1,由于 o 2 o_2 o2最大,那么预测类别为2,其代表猫。

(数学基础不好的小白看到置信度这个词大概不理解是什么意思,按我个人的理解可以解释为若在100次随机抽样中构造的100个区间如果95次包含了参数真值,那么置信度为95%.,假设100个学生考100次试,每个学生的100次成绩为一个置信区间,有95个学生成绩区间中都包含了80,那我们可以相信这个班学生的成绩水平为80,置信度是95%,如果理解有误感谢批评指正,建议参考【统计理论】关于置信度、置信区间的理解)

然而,直接使用输出层的输出有两个问题。一方面,由于输出层的输出值的范围不确定,我们难以直观上判断这些值的意义。例如,刚才举的例子中的输出值10表示“很置信”图像类别为猫,因为该输出值是其他两类的输出值的100倍。但如果 o 1 = o 3 = 1 0 3 o_1=o_3=10^3 o1=o3=103,那么输出值10却又表示图像类别为猫的概率很低。另一方面,由于真实标签是离散值,这些离散值与不确定范围的输出值之间的误差难以衡量。

softmax运算符(softmax operator)解决了以上两个问题。它通过下式将输出值变换成值为正且和为1的概率分布:

y ^ 1 , y ^ 2 , y ^ 3 = softmax ( o 1 , o 2 , o 3 ) \hat{y}_1, \hat{y}_2, \hat{y}_3 = \text{softmax}(o_1, o_2, o_3) y^1,y^2,y^3=softmax(o1,o2,o3)

其中

y ^ 1 = exp ⁡ ( o 1 ) ∑ i = 1 3 exp ⁡ ( o i ) , y ^ 2 = exp ⁡ ( o 2 ) ∑ i = 1 3 exp ⁡ ( o i ) , y ^ 3 = exp ⁡ ( o 3 ) ∑ i = 1 3 exp ⁡ ( o i ) . \hat{y}_1 = \frac{ \exp(o_1)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}_2 = \frac{ \exp(o_2)}{\sum_{i=1}^3 \exp(o_i)},\quad \hat{y}_3 = \frac{ \exp(o_3)}{\sum_{i=1}^3 \exp(o_i)}. y^1=i=13exp(oi)exp(o1),y^2=i=13exp(oi)exp(o2),y^3=i=13exp(oi)exp(o3).

容易看出 y ^ 1 + y ^ 2 + y ^ 3 = 1 \hat{y}_1 + \hat{y}_2 + \hat{y}_3 = 1 y^1+y^2+y^3=1 0 ≤ y ^ 1 , y ^ 2 , y ^ 3 ≤ 1 0 \leq \hat{y}_1, \hat{y}_2, \hat{y}_3 \leq 1 0y^1,y^2,y^31,因此 y ^ 1 , y ^ 2 , y ^ 3 \hat{y}_1, \hat{y}_2, \hat{y}_3 y^1,y^2,y^3是一个合法的概率分布。这时候,如果 y ^ 2 = 0.8 \hat{y}_2=0.8 y^2=0.8,不管 y ^ 1 \hat{y}_1 y^1 y ^ 3 \hat{y}_3 y^3的值是多少,我们都知道图像类别为猫的概率是80%。此外,我们注意到

arg ⁡ max ⁡ i o i = arg ⁡ max ⁡ i y ^ i \underset{i}{\arg\max} o_i = \underset{i}{\arg\max} \hat{y}_i iargmaxoi=iargmaxy^i

因此softmax运算不改变预测类别输出。

3.4.3 单样本分类的矢量计算表达式

为了提高计算效率,我们可以将单样本分类通过矢量计算来表达。在上面的图像分类问题中,假设softmax回归的权重和偏差参数分别为

W = [ w 11 w 12 w 13 w 21 w 22 w 23 w 31 w 32 w 33 w 41 w 42 w 43 ] , b = [ b 1 b 2 b 3 ] , \boldsymbol{W} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \\ w_{41} & w_{42} & w_{43} \end{bmatrix},\quad \boldsymbol{b} = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}, W= w11w21w31w41w12w22w32w42w13w23w33w43 ,b=[b1b2b3],

设高和宽分别为2个像素的图像样本 i i i的特征为

x ( i ) = [ x 1 ( i ) x 2 ( i ) x 3 ( i ) x 4 ( i ) ] , \boldsymbol{x}^{(i)} = \begin{bmatrix}x_1^{(i)} & x_2^{(i)} & x_3^{(i)} & x_4^{(i)}\end{bmatrix}, x(i)=[x1(i)x2(i)x3(i)x4(i)],

输出层的输出为

o ( i ) = [ o 1 ( i ) o 2 ( i ) o 3 ( i ) ] , \boldsymbol{o}^{(i)} = \begin{bmatrix}o_1^{(i)} & o_2^{(i)} & o_3^{(i)}\end{bmatrix}, o(i)=[o1(i)o2(i)o3(i)],

预测为狗、猫或鸡的概率分布为

y ^ ( i ) = [ y ^ 1 ( i ) y ^ 2 ( i ) y ^ 3 ( i ) ] . \boldsymbol{\hat{y}}^{(i)} = \begin{bmatrix}\hat{y}_1^{(i)} & \hat{y}_2^{(i)} & \hat{y}_3^{(i)}\end{bmatrix}. y^(i)=[y^1(i)y^2(i)y^3(i)].

softmax回归对样本 i i i分类的矢量计算表达式为

o ( i ) = x ( i ) W + b , y ^ ( i ) = softmax ( o ( i ) ) . \begin{aligned} \boldsymbol{o}^{(i)} &= \boldsymbol{x}^{(i)} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{y}}^{(i)} &= \text{softmax}(\boldsymbol{o}^{(i)}). \end{aligned} o(i)y^(i)=x(i)W+b,=softmax(o(i)).

3.4.4 小批量样本分类的矢量计算表达式

为了进一步提升计算效率,我们通常对小批量数据做矢量计算。广义上讲,给定一个小批量样本,其批量大小为 n n n,输入个数(特征数)为 d d d,输出个数(类别数)为 q q q。设批量特征为 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} XRn×d。假设softmax回归的权重和偏差参数分别为 W ∈ R d × q \boldsymbol{W} \in \mathbb{R}^{d \times q} WRd×q b ∈ R 1 × q \boldsymbol{b} \in \mathbb{R}^{1 \times q} bR1×q。softmax回归的矢量计算表达式为

O = X W + b , Y ^ = softmax ( O ) , \begin{aligned} \boldsymbol{O} &= \boldsymbol{X} \boldsymbol{W} + \boldsymbol{b},\\ \boldsymbol{\hat{Y}} &= \text{softmax}(\boldsymbol{O}), \end{aligned} OY^=XW+b,=softmax(O),

其中的加法运算使用了广播机制, O , Y ^ ∈ R n × q \boldsymbol{O}, \boldsymbol{\hat{Y}} \in \mathbb{R}^{n \times q} O,Y^Rn×q且这两个矩阵的第 i i i行分别为样本 i i i的输出 o ( i ) \boldsymbol{o}^{(i)} o(i)和概率分布 y ^ ( i ) \boldsymbol{\hat{y}}^{(i)} y^(i)

3.4.5 交叉熵损失函数

前面提到,使用softmax运算后可以更方便地与离散标签计算误差。我们已经知道,softmax运算将输出变换成一个合法的类别预测分布。实际上,真实标签也可以用类别分布表达:对于样本 i i i,我们构造向量 y ( i ) ∈ R q \boldsymbol{y}^{(i)}\in \mathbb{R}^{q} y(i)Rq ,使其第 y ( i ) y^{(i)} y(i)(样本 i i i类别的离散数值)个元素为1,其余为0。这样我们的训练目标可以设为使预测概率分布 y ^ ( i ) \boldsymbol{\hat y}^{(i)} y^(i)尽可能接近真实的标签概率分布 y ( i ) \boldsymbol{y}^{(i)} y(i)

我们可以像线性回归那样使用平方损失函数 ∥ y ^ ( i ) − y ( i ) ∥ 2 / 2 \|\boldsymbol{\hat y}^{(i)}-\boldsymbol{y}^{(i)}\|^2/2 y^(i)y(i)2/2。然而,想要预测分类结果正确,我们其实并不需要预测概率完全等于标签概率。例如,在图像分类的例子里,如果 y ( i ) = 3 y^{(i)}=3 y(i)=3,那么我们只需要 y ^ 3 ( i ) \hat{y}^{(i)}_3 y^3(i)比其他两个预测值 y ^ 1 ( i ) \hat{y}^{(i)}_1 y^1(i) y ^ 2 ( i ) \hat{y}^{(i)}_2 y^2(i)大就行了。即使 y ^ 3 ( i ) \hat{y}^{(i)}_3 y^3(i)值为0.6,不管其他两个预测值为多少,类别预测均正确。而平方损失则过于严格,例如 y ^ 1 ( i ) = y ^ 2 ( i ) = 0.2 \hat y^{(i)}_1=\hat y^{(i)}_2=0.2 y^1(i)=y^2(i)=0.2 y ^ 1 ( i ) = 0 , y ^ 2 ( i ) = 0.4 \hat y^{(i)}_1=0, \hat y^{(i)}_2=0.4 y^1(i)=0,y^2(i)=0.4的损失要小很多,虽然两者都有同样正确的分类预测结果。

改善上述问题的一个方法是使用更适合衡量两个概率分布差异的测量函数。其中,交叉熵(cross entropy)是一个常用的衡量方法:

H ( y ( i ) , y ^ ( i ) ) = − ∑ j = 1 q y j ( i ) log ⁡ y ^ j ( i ) , H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ) = -\sum_{j=1}^q y_j^{(i)} \log \hat y_j^{(i)}, H(y(i),y^(i))=j=1qyj(i)logy^j(i),

其中带下标的 y j ( i ) y_j^{(i)} yj(i)是向量 y ( i ) \boldsymbol y^{(i)} y(i)中非0即1的元素,需要注意将它与样本 i i i类别的离散数值,即不带下标的 y ( i ) y^{(i)} y(i)区分。在上式中,我们知道向量 y ( i ) \boldsymbol y^{(i)} y(i)中只有第 y ( i ) y^{(i)} y(i)个元素 y y ( i ) ( i ) y^{(i)}_{y^{(i)}} yy(i)(i)为1,其余全为0,于是 H ( y ( i ) , y ^ ( i ) ) = − log ⁡ y ^ y ( i ) ( i ) H(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}) = -\log \hat y_{y^{(i)}}^{(i)} H(y(i),y^(i))=logy^y(i)(i)。也就是说,交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确。当然,遇到一个样本有多个标签时,例如图像里含有不止一个物体时,我们并不能做这一步简化。但即便对于这种情况,交叉熵同样只关心对图像中出现的物体类别的预测概率。

假设训练数据集的样本数为 n n n,交叉熵损失函数定义为
ℓ ( Θ ) = 1 n ∑ i = 1 n H ( y ( i ) , y ^ ( i ) ) , \ell(\boldsymbol{\Theta}) = \frac{1}{n} \sum_{i=1}^n H\left(\boldsymbol y^{(i)}, \boldsymbol {\hat y}^{(i)}\right ), (Θ)=n1i=1nH(y(i),y^(i)),

其中 Θ \boldsymbol{\Theta} Θ代表模型参数。同样地,如果每个样本只有一个标签,那么交叉熵损失可以简写成 ℓ ( Θ ) = − ( 1 / n ) ∑ i = 1 n log ⁡ y ^ y ( i ) ( i ) \ell(\boldsymbol{\Theta}) = -(1/n) \sum_{i=1}^n \log \hat y_{y^{(i)}}^{(i)} (Θ)=(1/n)i=1nlogy^y(i)(i)。从另一个角度来看,我们知道最小化 ℓ ( Θ ) \ell(\boldsymbol{\Theta}) (Θ)等价于最大化 exp ⁡ ( − n ℓ ( Θ ) ) = ∏ i = 1 n y ^ y ( i ) ( i ) \exp(-n\ell(\boldsymbol{\Theta}))=\prod_{i=1}^n \hat y_{y^{(i)}}^{(i)} exp(n(Θ))=i=1ny^y(i)(i),即最小化交叉熵损失函数等价于最大化训练数据集所有标签类别的联合预测概率。

3.4.6 模型预测及评价

在训练好softmax回归模型后,给定任一样本特征,就可以预测每个输出类别的概率。通常,我们把预测概率最大的类别作为输出类别。如果它与真实类别(标签)一致,说明这次预测是正确的。在3.6节的实验中,我们将使用准确率(accuracy)来评价模型的表现。它等于正确预测数量与总预测数量之比。

小结

  • softmax回归适用于分类问题。它使用softmax运算输出类别的概率分布。
  • softmax回归是一个单层神经网络,输出个数等于分类问题中的类别个数。
  • 交叉熵适合衡量两个概率分布的差异。

注:本节与原书基本相同,原书此节传送门

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/700199.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Socks5代理与代理IP的应用

在全球化的背景下,跨界电商和游戏行业正经历着蓬勃发展的时代。然而,随之而来的网络安全挑战也日益突出。为了应对这些挑战,Socks5代理与代理IP等技术成为了保障网络安全的重要工具。本文将探讨这些技术在跨界电商和游戏行业中的应用&#xf…

Python模块百科_时间的访问和转换(time)_下

TOC 一、概述 time模块提供了各种与时间相关的函数。相关功能还可以参阅datetime 和 calendar模块。 尽管所有平台皆可引用此模块,但模块内的函数并不是所有平台都可用。此模块中定义的大多数函数的实现都是调用其所在平台的C语言库的同名函数。因为这些函数的语义…

Rust之构建命令行程序(四):用TDD(测试-驱动-开发)模式来开发库的功能

开发环境 Windows 11Rust 1.75.0 VS Code 1.86.2 项目工程 这次创建了新的工程minigrep. 用测试-驱动模式来开发库的功能 既然我们已经将逻辑提取到src/lib.rs中,并将参数收集和错误处理留在src/main.rs中,那么为代码的核心功能编写测试就容易多了。我…

C#浮点运算出错问题

在计算单价等活动的时候,我们经常会用到double 浮点进行运算,但是在乘除的时候经常出现精度丢失问题 decimal 关键字表示 128 位数据类型。 同浮点型相比,decimal 类型具有更高的精度和更小的范围,这使它适合于财务和货币计算 dou…

【MATLAB源码-第146期】基于matlab的信源编码仿真GUI,对比霍夫曼编码,算术编码和LZ编码。

操作环境: MATLAB 2022a 1、算法描述 霍夫曼编码、算术编码和LZ编码是三种广泛应用于数据压缩领域的编码技术。它们各自拥有独特的设计哲学、实现方式和适用场景,因此在压缩效率、编解码速度和内存使用等方面表现出不同的特点。接下来详细描述这三种编…

【大厂AI课学习笔记】【2.2机器学习开发任务实例】(7)特征构造

特征分析之后,就是特征构造。 特征构造第一步 特征构造往往要进行数据的归一化。 在本案例中,我们将所有的数据,将所有特征区间调整为0~1之间。 如上图。 那么,为什么要进行归一化,又如何将数据,调整为…

信号处理与 signal.h 库

C 语言中的 signal.h 头文件提供了一种处理程序执行期间报告的不同信号的机制。它定义了一些变量类型、宏和函数,让程序能够更灵活地响应来自操作系统或其他进程的信号。 sig_atomic_t 类型 sig_atomic_t 类型是一种在信号处理程序中使用的整数类型。它保证在信号…

QtCreator“设计”按钮灰色无法点击,如何解决

Mac中安装QML Designer插件: 首选项-> 关于插件 -> 勾选QT Quick下的QML Designer 点击确定安装插件,重启Qt Creator后生效

【Langchain多Agent实践】一个有推销功能的旅游聊天机器人

【LangchainStreamlit】旅游聊天机器人_langchain streamlit-CSDN博客 视频讲解地址:【Langchain Agent】带推销功能的旅游聊天机器人_哔哩哔哩_bilibili 体验地址: http://101.33.225.241:8503/ github地址:GitHub - jerry1900/langcha…

C++惯用法之CRTP(奇异递归模板模式)

相关系列文章 C惯用法之Pimpl C之数据转换(全) 目录 1.介绍 2.CRTP的使用场景 2.1.实现静态多态 2.2.代码复用和扩展性 3.总结 1.介绍 CRTP的全称是Curiously Recurring Template Pattern,即奇异递归模板模式,简称CRTP。CRTP是一种特殊的模板技术和…

【达梦数据库】数据库的方言问题导致的启动失败

问题场景 在项目中采用了hibernate ,连接数据库原本为ORACLE,后续打算改造为国产数据库 达梦 链接配置: # 达梦写法, index:driver-class-name: dm.jdbc.driver.DmDriverjdbc-url: jdbc:dm://192.168.220.225:5236/IDX4username:…

Windows 路径长度限制

Windows API 中的路径长度限制是 260 个字符,但实际可用长度会因为几个因素而减少。以下是减少可用字符数的因素: 驱动器标识符:路径通常包括驱动器的标识符(如 C:\),这占用了3个字符。 8.3 文件名保留&am…

【QT 5 +Linux下软件生成+qt软件生成使用工具+学习他人文章+第一篇:使用linuxdeployqt软件生成】

【QT 5 Linux下软件生成qt软件生成使用工具学习他人文章第一篇:使用linuxdeployqt软件生成】 1、前言2、实验环境3、自我学习总结-本篇总结1、新手的疑问,做这件事的目的2、了解工具:linuxdeployqt工具3、解决相关使用过程中问题 4、参照文章…

新手想要做好抖音小店,在开店前你需要知道这五点注意事项!

大家好,我是电商小布。 开抖店你说难吗,其实也不难,把需要的材料准备好就可以着手开店。 难的呢,是在小店的运营上边。 所以新手开店想要少出错,少踩坑,一定要提前把店铺的相关注意事项搞清楚。 今天&a…

将yolov8权重文件转为onnx格式并在c#中使用

yolo模型转ONNX 在yolov8中,我们将训练结果的.pt权重文件转换为onnx格式只需要使用ultralytics库中的YOLO类,使用pip安装ultralytics库,然后执行下面python代码 from ultralytics import YOLO# 加载YOLOv8模型 model YOLO("best.pt&q…

锁类型介绍

锁类型详解 在 《Mutex 详解》一文中我们主要介绍了 C11 标准中的互斥量(Mutex),并简单介绍了一下两种锁类型。本节将详细介绍一下 C11 标准的的锁类型。 C11 标准为我们提供了两种基本的锁类型,分别如下: std::lock_guard,与 …

力扣代码学习日记六

Problem: 66. 加一 思路 给定一个由 整数 组成的 非空 数组所表示的非负整数,在该数的基础上加一。 最高位数字存放在数组的首位, 数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外,这个整数不会以零开头。 示例 1: 输…

Selenium浏览器自动化测试框架详解

selenium简介 介绍 Selenium [1] 是一个用于Web应用程序测试的工具。Selenium测试直接运行在浏览器中,就像真正的用户在操作一样。支持的浏览器包括IE(7, 8, 9, 10, 11),Mozilla Firefox,Safari,Google C…

抖店没有流量怎么办?如何提高店铺流量?醒醒团队经验分享!

我是电商珠珠 醒醒团队这个IP已经做了五年多的时间了,团队成员从原来的几个人到现在的70。我们从20年开始入驻抖店,到现在也已经三年多了。期间也会带着学员一起做店,大多数学员的问题就是店开了,但是一直没有流量,没…

深度学习中数据的转换

原始(文本、音频、图像、视频、传感器等)数据被转化成结构化且适合机器学习算法或深度学习模型使用的格式。 原始数据转化为结构化且适合机器学习和深度学习模型使用的格式,通常需要经历以下类型的预处理和转换: 文本数据&#xf…