最优传输(Optimal Transport)

        最优传输(Optimal Transport)是一种数学理论和计算方法,用于描述两个概率分布之间的距离或者对应关系。它的核心概念是如何以最佳方式将一组资源(如质量、能量等)从一个位置传输到另一个位置。

基本概念:

  1. 概率分布: 在最优传输中,通常涉及到两个概率分布。这些概率分布可以代表不同位置上的资源分布情况,如图像的像素分布、文本中的词语分布等。

  2. 距离度量: 最优传输理论通过某种距离度量来衡量两个概率分布之间的相似度或差异性。常用的距离度量包括 Wasserstein 距离、Kullback-Leibler 散度等。

  3. 传输方案: 最优传输问题的目标是找到最佳的资源传输方案,以最小化资源传输的成本。这个传输方案描述了如何将资源从一个分布移动到另一个分布,使得总成本最小化。

数学形式:

在数学上,最优传输问题可以形式化为一个线性规划问题或者凸优化问题,其基本形式如下:

        给定两个概率分布 (\mu ) 和 ( \nu ),以及一个成本函数 ( c(x, y) ),其中 ( x ) 表示来自 ( \mu ) 的资源,(y ) 表示来自 ( \nu ) 的资源。最优传输问题可以表述为:

[ \text{minimize} \quad \int\int c(x, y) , d\pi(x, y) ]

其中 ( \pi ) 是 ( \mu ) 和 ( \nu ) 之间的联合分布,满足以下条件:

  1. ( \pi) 的边缘分布分别为 ( \mu ) 和 ( \nu )。
  2. ( \pi ) 是可行的传输方案。

应用:

最优传输理论在各个领域都有广泛的应用,包括但不限于:

  1. 图像处理: 用于图像对齐、图像变形、颜色迁移等任务。
  2. 机器学习: 用于领域自适应、分布匹配等。
  3. 经济学: 用于描述供需关系、经济资源配置等。
  4. 统计学: 用于测量两个随机变量之间的相似度或距离。

一个典型的最优传输问题是在图像处理领域中的图像变形任务。假设有两张图像 A 和 B,我们希望通过最优传输方法将图像 A 中的像素分布转换为图像 B 中的像素分布,以实现图像的变形。

在这个问题中,我们可以将图像 A 和 B 中的像素分布分别视为两个概率分布 ( \mu ) 和 ( \nu )。假设 ( \mu ) 和 ( \nu ) 分别表示图像 A 和 B 中的像素分布,那么最优传输问题可以表述为:

[ \text{minimize} \quad \int \int c(x, y) , d\pi(x, y) ]

其中 ( c(x, y)) 是像素 ( x ) 和像素 ( y ) 之间的成本函数,通常是像素之间的距离或者差异度。( \pi ) 是 ( \mu ) 和 ( \nu ) 之间的联合分布,满足以下条件:

  1. \pi ) 的边缘分布分别为 ( \mu ) 和 ( \nu )。
  2. \pi ) 是可行的传输方案。

解决这个问题的方法通常是通过线性规划或者凸优化方法。一旦找到了最优的传输方案 ( \pi ),我们就可以将图像 A 中的像素按照这个方案重新分布到图像 B 中,从而实现图像的变形。

实例

实例1

        一个具体的实例是在图像生成和变换任务中的应用。

        假设我们有两幅图像,分别是一张狗的图像和一张猫的图像。我们希望将狗的图像转换成猫的图像,但是这两张图像的风格、颜色、形状等特征可能存在一定的差异。

        通过最优传输理论,我们可以量化这两张图像之间的差异,并且找到最佳的映射关系,从而实现图像的转换。具体来说,我们可以将每张图像看作一个概率分布,其中每个像素的灰度值可以看作是一个随机变量。然后,通过计算两个图像之间的Wasserstein距离,我们可以找到将一个图像中的像素映射到另一个图像中的最佳方式。

实例2   

        另一个具体的实例是在医学影像分析中的应用。

        假设我们有来自不同医学机构的两组X射线胸片图像,一组用于健康人群,另一组用于患有肺部疾病(如肺炎)的人群。我们的目标是通过最优传输理论来比较这两组图像之间的差异,从而帮助医生更好地理解疾病的特征,提高疾病诊断的准确性。

        首先,我们可以将每组图像看作是一个概率分布,其中每个像素的灰度值表示该像素出现在图像中的概率。然后,通过计算两组图像之间的Wasserstein距离,我们可以量化它们之间的差异。这有助于医生们更好地理解健康人群和患有疾病人群之间肺部结构的差异,以及患病区域的特征。

        进一步地,通过最优传输理论,我们可以找到将健康人群的肺部结构映射到患病人群的肺部结构的最佳方式。这有助于医生们发现疾病的特征性变化,并且可以用于辅助疾病的早期诊断和预测。

Python代码举例

import numpy as np
from scipy.spatial.distance import cdist
# scipy.spatial.distance 中的 cdist 函数用于计算两组点集之间的距离矩阵。
from ot import emd
# ot 是 OpenOptimalTransport 的缩写,是一个用于最优传输问题的库。
p = np.array([0.2, 0.3, 0.5])
q = np.array([0.1, 0.6, 0.3])C = cdist(np.array([1, 2, 3]).reshape(-1, 1), np.array([1, 2, 3]).reshape(-1, 1))
# cdist 函数计算两组点集之间的距离矩阵。
# 这里计算了一个简单的一维空间中的点集 [1, 2, 3] 与自身的距离矩阵,这个矩阵将被用作最优传输问题中的代价矩阵。
T = emd(p, q, C)
# emd 函数用于计算 Earth Mover's Distance(EMD,也叫 Wasserstein 距离)
# p 和 q 是两个概率分布,C 是代价矩阵。
# T 是最优传输方案,它表示了如何将质量从概率分布 p 转移到概率分布 q 的最佳方式。
print(T)
# T[i, j] 表示将概率分布 p 中第 i 个质量单位转移到概率分布 q 中第 j 个质量单位的量。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/698291.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt 5.12.12 如何使用 cmake

首先 我们需要 Qt6 的help 这里面有所有使用cmake的说明 Qt6 help 下载地址 : 链接: https://pan.baidu.com/s/1jhwdYLtFaAa7tq5Gly0gAQ?pwd6666 提取码: 6666 然后 通过 qt creator 安装help qt-creater打开 Tools -> options -> Help -> Documentation 选择 …

MongoDB聚合运算符:$avg

$avg运算符返回给定数值的平均值 $avg可用于以下阶段: $addFields阶段(从MongoDB 3.4开始可用)$bucket阶段$bucketAuto阶段$group阶段包含$expr表达式的$match阶段$project阶段$replaceRoot阶段(从MongoDB 3.4开始可用)$replaceWith阶段(从MongoDB 4.2开始可用)$s…

【Linux】设置线程名字prctl、pthread_setname_np

1、prctl 设置线程名字 1.1 说明 prctl 对线程和进程的操作,详见:https://man7.org/linux/man-pages/man2/prctl.2.html #include <sys/prctl.h>int prctl(int option , ... /* unsigned long arg2 , unsigned long arg3 , unsigned long arg4 , unsigned long arg5…

Java编程实战:构建医疗信息管理新平台

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

代码随想录算法训练营day25|216.组合总和III

216.组合总和III 题目链接/文章讲解&#xff1a;代码随想录 视频讲解&#xff1a;和组合问题有啥区别&#xff1f;回溯算法如何剪枝&#xff1f;| LeetCode&#xff1a;216.组合总和III_哔哩哔哩_bilibili 跟77题差不多&#xff0c;要搞清楚k确定了递归的深度 依旧用回溯三部…

cesium 高德路网数据加载到WGS-84坐标系,解决偏移问题

首先用到cesium.map.min.js 修改cesium.map.min.js中数据类型的瓦片路径 比如类型是img 搜索M.GCJ02ToWGS84&#xff0c;初步定位&#xff0c;确定是火星坐标系转wGS-84&#xff0c;然后修改 var S{img:"//webst{s}.is.autonavi.com/appmaptile?style6&x{x}&y{y…

sql注入 [极客大挑战 2019]FinalSQL1

打开题目 点击1到5号的结果 1号 2号 3号 4号 5号 这里直接令传入的id6 传入id1^1^1 逻辑符号|会被检测到&#xff0c;而&感觉成了注释符&#xff0c;&之后的内容都被替换掉了。 传入id1|1 直接盲注比较慢&#xff0c;还需要利用二分法来编写脚本 这里利用到大佬的脚…

英伟达推出免训练,可生成连贯图片的文生图模型

目前&#xff0c;多数文生图模型皆使用的是随机采样模式&#xff0c;使得每次生成的图像效果皆不同&#xff0c;在生成连贯的图像方面非常差。 例如&#xff0c;想通过AI生成一套图像连环画&#xff0c;即便使用同类的提示词也很难实现。虽然DALLE 3和Midjourney可以对图像实现…

linux0.11 源码阅读 head.s setup.s bootsect.s加载位置

从github上下载linux0.11源码 linux0.11源码 将0x10000处的代码往下复制到0开始的地址处。 移动后的内存布局如下 setup中存在gdt和idt的相关数据。此时需要用gdtr和idtr寄存器指向对应的数据。 实模式下&#xff0c;访问内存方式。最多访问1M内存。

有哪些适合程序员的副业?

如果你经常玩知乎、看公众号&#xff08;软件、工具、互联网这几类的&#xff09;你就会发现&#xff0c;好多资源连接都变成了夸克网盘、迅雷网盘的资源链接。 例如&#xff1a;天涯神贴&#xff0c;基本上全是夸克、UC、迅雷网盘的资源链接。 有资源的前提下&#xff0c;迅雷…

人工智能 — 图像滤波器

目录 一、图像噪声1、高斯噪声2、椒盐噪声3、泊松噪声4、乘性噪声5、瑞利噪声6、伽马噪声 二、图像滤波三、各种滤波器1、均值滤波2、中值滤波3、最大最小值滤波4、引导滤波 四、图像增强1、点处理1、线性变换2、分段线性变换3、对数变换4、幂律变换/伽马变换 2、领域处理3、图…

IP设置教程

Win 7 固定Ip设定 https://jingyan.baidu.com/article/4b07be3cbc8e7348b380f31d.html Win 10 固定Ip设定 Win10 固定IP地址方法_win10设置固定ip地址怎么设置-CSDN博客 Win 11 固定Ip设定 https://jingyan.baidu.com/article/cb5d6105be5354415c2fe0d3.html TP-LINK…

LightGBM中的特征选择与重要性评估

导言 在机器学习任务中&#xff0c;特征选择是提高模型性能和减少过拟合的重要步骤之一。LightGBM作为一种高效的梯度提升决策树算法&#xff0c;提供了内置的特征重要性评估功能&#xff0c;帮助用户选择最重要的特征进行模型训练。本教程将详细介绍如何在Python中使用LightG…

图表征学习——Graph Embedding

图表征学习的目的是将图中的节点嵌入低维的表征&#xff0c;并有效地保留图的结构信息。 Graph Embedding是实现图表征学习的方法&#xff0c;即Graph Embedding的目的也是将图结构转换为节点的低维嵌入表示&#xff0c;在这个过程中&#xff0c;保留图的拓扑结构信息尤为重要。…

2006-2021年地级市资本存量数据(含原始数据+计算过程+计算结果)(以2006年为基期)

2006-2021年地级市资本存量数据&#xff08;含原始数据计算过程计算结果&#xff09;&#xff08;以2006年为基期&#xff09; 1、时间&#xff1a;2006-2021年 2、来源&#xff1a;城市年鉴、统计年鉴、各省年鉴、各市年鉴和公报、2017-2021年利用固定资产投资增速计算获取 …

【C语言】内存操作,内存函数篇---memcpy,memmove,memset和memcmp内存函数的使用和模拟实现【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本篇为​【C语言】内存操作&#xff0c;内存函数篇---memcpy&#xff0c;memmove&#xff0c;memset和memcmp内存函数的使用和模拟实现【图文详解】&#xff0c;图文讲解四种内存函数&#xff0c;带大家更深刻理解C语言中内存函数的操作&…

体育赛事直播系统软件开发

体育赛事直播系统的软件开发是一个复杂的项目&#xff0c;需要多个方面的准备和工作。以下是开发这样一个系统可能涉及的主要步骤和考虑因素&#xff1a; 需求分析和规划&#xff1a;首先需要明确系统的功能需求&#xff0c;包括直播视频的流媒体处理、用户管理、直播赛事安排…

WooCommerce商品采集与发布插件

如何采集商品或产品信息&#xff0c;并自动发布到Wordpress系统的WooCommerce商品&#xff1f; 推荐使用简数采集器&#xff0c;操作简单方便&#xff0c;且无缝衔接WooCommerce插件&#xff0c;快速完成商品的采集与发布。 简数采集器的智能自动生成采集规则和可视化操作功能…

Pytorch学习(杂知识)

Mini-batch Mii-batch是一种在机器学习中常用的训练算法。它是将大的数据集分成一些小的数据集&#xff0c;每次只用一个小的数据集来训练模型。通常情况下&#xff0c;训练数据集中的数据越多&#xff0c;训练出的模型越准确&#xff0c;但是如果数据集太大&#xff0c;就会导…

【EI会议征稿通知】第四届生物医学与生物信息工程国际学术会议(ICBBE 2024)

第四届生物医学与生物信息工程国际学术会议&#xff08;ICBBE 2024&#xff09; The 4th International Conference on Biomedicine and Bioinformatics Engineering 由河南大学主办&#xff0c;中州实验室、河南大学基础医学院、河南大学郑州校区学术发展部共同承办的第四届生…