C++力扣题目 647--回文子串 516--最长回文子序列

647. 回文子串

力扣题目链接(opens new window)

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

  • 输入:"abc"
  • 输出:3
  • 解释:三个回文子串: "a", "b", "c"

示例 2:

  • 输入:"aaa"
  • 输出:6
  • 解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:输入的字符串长度不会超过 1000 。

#思路

#暴力解法

两层for循环,遍历区间起始位置和终止位置,然后还需要一层遍历判断这个区间是不是回文。所以时间复杂度:O(n^3)

#动态规划

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

如果大家做了很多这种子序列相关的题目,在定义dp数组的时候 很自然就会想题目求什么,我们就如何定义dp数组。

绝大多数题目确实是这样,不过本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。

dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。

所以我们要看回文串的性质。 如图:

我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。

所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  1. 确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

  1. dp数组如何初始化

dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i][j]初始化为false。

  1. 确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

647.回文子串

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}}}
}

  1. 举例推导dp数组

举例,输入:"aaa",dp[i][j]状态如下:

647.回文子串1

图中有6个true,所以就是有6个回文子串。

注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分

以上分析完毕,C++代码如下:

class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序for (int j = i; j < s.size(); j++) {if (s[i] == s[j]) {if (j - i <= 1) { // 情况一 和 情况二result++;dp[i][j] = true;} else if (dp[i + 1][j - 1]) { // 情况三result++;dp[i][j] = true;}}}}return result;}
};

以上代码是为了凸显情况一二三,当然是可以简洁一下的,如下:

class Solution {
public:int countSubstrings(string s) {vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));int result = 0;for (int i = s.size() - 1; i >= 0; i--) {for (int j = i; j < s.size(); j++) {if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {result++;dp[i][j] = true;}}}return result;}
};

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

#双指针法

动态规划的空间复杂度是偏高的,我们再看一下双指针法。

首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。

在遍历中心点的时候,要注意中心点有两种情况

一个元素可以作为中心点,两个元素也可以作为中心点。

那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。

所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。

这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:

class Solution {
public:int countSubstrings(string s) {int result = 0;for (int i = 0; i < s.size(); i++) {result += extend(s, i, i, s.size()); // 以i为中心result += extend(s, i, i + 1, s.size()); // 以i和i+1为中心}return result;}int extend(const string& s, int i, int j, int n) {int res = 0;while (i >= 0 && j < n && s[i] == s[j]) {i--;j++;res++;}return res;}
};

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

 

516.最长回文子序列

力扣题目链接(opens new window)

给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。

示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。

提示:

  • 1 <= s.length <= 1000
  • s 只包含小写英文字母

#思路

我们刚刚做过了 动态规划:回文子串 (opens new window),求的是回文子串,而本题要求的是回文子序列, 要搞清楚这两者之间的区别。

回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。

回文子串,可以做这两题:

  • 647.回文子串
  • 5.最长回文子串

思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

  1. 确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如图: 

516.最长回文子序列

(如果这里看不懂,回忆一下dp[i][j]的定义)

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

516.最长回文子序列1

代码如下:

if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;
} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}

  1. dp数组如何初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;

  1. 确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:

所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}
}

  1. 举例推导dp数组

输入s:"cbbd" 为例,dp数组状态如图:

516.最长回文子序列3

红色框即:dp[0][s.size() - 1]; 为最终结果。

以上分析完毕,C++代码如下:

class Solution {
public:int longestPalindromeSubseq(string s) {vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));for (int i = 0; i < s.size(); i++) dp[i][i] = 1;for (int i = s.size() - 1; i >= 0; i--) {for (int j = i + 1; j < s.size(); j++) {if (s[i] == s[j]) {dp[i][j] = dp[i + 1][j - 1] + 2;} else {dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);}}}return dp[0][s.size() - 1];}
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n^2)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/697742.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试系列之《Spark》(持续更新...)

参考文档及示例代码均基于pyspark3.1.2 1.什么是RDD&#xff1f;2.job、stage、task如何划分&#xff1f;3.什么是宽窄依赖&#xff1f;4.spark有哪几种部署模式&#xff1f;5.spark中的算子分为哪些类型&#xff0c;举例说明。6.cache、persist、checkpoint的区别&#xff0c;…

C++模板为什么不能声明和定义分离

首先我们要直到C程序运行需要进行的四个阶段。 预处理->编译->汇编->链接 编译&#xff1a;对语法语义分析&#xff0c;分析无误生成汇编&#xff0c;头文件不参加编译&#xff0c;多个源文件是分开单独编译的。 链接&#xff1a;将多个obj文件链接合成一个&#x…

ubuntu20.04安装webots仿真

ubuntu20.04安装webots仿真 1.首先: wget -qO- https://cyberbotics.com/Cyberbotics.asc | sudo apt-key add - sudo apt-add-repository deb https://cyberbotics.com/debian/ binary-amd64/ sudo apt-get update sudo apt-get install webots .bashrc中添加环境变量:…

Sora----打破虚实之间的最后一根枷锁----这扇门的背后是人类文明的晟阳还是最后的余晖

目录 一.Sora出道即巅峰 二.为何说Sora是该领域的巨头 三.Sora无敌的背后究竟有怎样先进的处理技术 1.Spacetime Latent Patches 潜变量时空碎片&#xff0c;建构视觉语言系统 2.扩散模型与Diffusion Transformer&#xff0c;组合成强大的信息提取器 3.DiT应用于潜变量时…

关于在分布式环境中RVN和使用场景的介绍4

简介 在前面的文档中&#xff0c;我们介绍了RVN的概念&#xff0c;通过RVN可以解决的某类问题和使用技巧&#xff0c;以及处理RVN的逻辑的具体实现。在本文中&#xff0c;我们将要介绍关于如何使用RVN解决另一种在分布式系统中常出现的问题。 问题 假设我们创建了一个servic…

C语言—自定义(构造)类型

2.20&#xff0c;17.56 1.只有当我们使用结构体类型定义变量/结构体数组,系统才会为结构体的成员分配内存空间,用于存储对应类型的数据 2.strct 结构体 一起作为结构体类型标识符 嘿嘿暂时先这样&#xff0c;我会回来改的1、定义一个表示公交线路的结构体&#xff0c;要…

pikachu靶场-CSRF

CSRF: 介绍&#xff1a; Cross-site request forgery简称为"CSRF”。 在CSF的攻击场景中攻击者会伪造一个请求&#xff08;这个请求一般是一个链接&#xff09; 然后欺骗目标用户进行点击&#xff0c;用户一旦点击了这个请求&#xff0c;整个攻击也就完成了&#xff0…

VSCode-更改系统默认路径

修改vscode中的默认扩展路径&#xff1a;"%USERPROFILE%\.vscode" 打开目录C:\用户\电脑用户名&#xff0c;将.vscode文件剪切至D:\VSCode文件夹下 用管理员身份打开cmd.exe命令界面输入mklink /D "%USERPROFILE%\.vscode" "D:\VSCode\.vscode\"…

同一个包下 golang run时报undefined

问题描述 今天在运行一个项目&#xff0c;一个包下有两个文件&#xff0c;分别是main.go和route&#xff0c;main函数在main.go文件中&#xff0c;main引用了route.go中的两个函数&#xff0c;SetupRoutes和SetupAdminRoutes go build 编译后&#xff0c;直接运行&#xff0c…

【C++私房菜】面向对象中的简单继承

文章目录 一、 继承基本概念二、派生类对象及派生类向基类的类型转换三、继承中的公有、私有和受保护的访问控制规则四、派生类的作用域五、继承中的静态成员 一、 继承基本概念 通过继承&#xff08;inheritance&#xff09;联系在一起的类构成一种层次关系。通常在层次关系的…

Leetcoder Day17| 二叉树 part06

语言&#xff1a;Java/C 654.最大二叉树 给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下&#xff1a; 二叉树的根是数组中的最大元素。左子树是通过数组中最大值左边部分构造出的最大二叉树。右子树是通过数组中最大值右边部分构造出的最大二叉树。 …

进程间传递 SQL 文的方法

SQL 文组成 SQL 文有 2 部分组成&#xff1a; SQL 原型&#xff0c;如&#xff1a;INSERT INTO test1 (id,name) VALUES (?,?)Args &#xff0c;? 号对应的值列表 有时&#xff0c;生成 SQL 文的进程和处理 SQL 文的进程&#xff0c;可能不是同一个 这里就涉及到如何高效…

免费搭建个人网盘

免费搭建一个属于个人的网盘。 服务端 详情请参考原网站的服务端下载和安装虚拟磁盘Fuse4Ui可以支持把网盘内容挂载成系统的分区&#xff1b; 挂载工具效果图&#xff1a;应用端应用端的下载 效果图

蓝桥杯第1374题——锻造兵器

题目描述 小明一共有n块锻造石&#xff0c;第块锻造石的属性值为ai. 现在小明决定从这n块锻造石中任取两块来锻造兵器 通过周密计算&#xff0c;小明得出&#xff0c;只有当两块锻造石的属性值的差值等于C&#xff0c;兵器才能锻造成功 请你帮小明算算&#xff0c;他有多少种选…

人工智能几个关键节点:深蓝,AlphaGo,ChatGPT,Sora

近30年&#xff0c;人工智能几个关键节点&#xff1a;深蓝&#xff0c;AlphaGo&#xff0c;ChatGPT&#xff0c;Sora 深蓝&#xff1a; 1997年&#xff0c;深蓝击败卡斯帕罗夫的比赛是通过一系列复杂的算法和策略实现的。深蓝的开发团队使用了一种名为“暴力搜索”的技术&…

OGG-00918 映射中缺少键列 id.

2024-02-23 14:54:49 INFO OGG-02756 从线索文件获取了表 GISTAR.PXPH_PON_ROUTE 的定义。. The following columns did not default because of type mismatches: id OGG-00918 映射中缺少键列 id. 目标端有字段ID&#xff0c;由于mysql自增&#xff0c;所以只能是b…

短剧小程序系统,重塑视频观看体验的科技革命

随着科技的飞速发展&#xff0c;人们对于数字化内容的消费需求也在不断增长。在这个大背景下&#xff0c;短剧小程序作为一种新型的视频观看方式&#xff0c;正逐渐受到大众的青睐。本文将探讨短剧小程序的发展背景、特点以及市场前景&#xff0c;分析其在重塑视频观看体验方面…

如何使用Inno Setup制作Unity构建程序的Windows安装程序

1. 准备 &#xff08;1&#xff09;准备好Unity构建的程序集合 必须包括&#xff1a; Data文件夹&#xff08;xxx_Data&#xff09; Mono文件夹&#xff08;MonoBleedingEdge&#xff09; 打包的应用程序文件&#xff08;xxx.exe&#xff09; Unity播放器dll文件&#xff…

SpringBoot+Docker:高效容器化的最佳实践

首先为什么要使用 Docker&#xff1f; Docker 是一个强大的工具&#xff0c;它允许开发者将他们的应用程序打包到容器中&#xff0c;以便可以在任何平台上轻松部署和运行。当涉及到对 Spring Boot 应用程序进行 Docker 化时&#xff0c;每个开发人员都应该遵循一些最佳实践&am…

编程笔记 Golang基础 017 数据类型:字符串类型

编程笔记 Golang基础 017 数据类型&#xff1a;字符串类型 一、字符串类型小结 在Go语言中&#xff0c;字符串&#xff08;string&#xff09;是一种基本的数据类型&#xff0c;用于表示文本数据。它是一个不可变的字符序列&#xff0c;由UTF-8编码的字节组成&#xff0c;支持U…