【数据结构】堆的基础功能实现与PriorityQueue

文章目录

  • 🍀堆的插入与删除
    • 🛫堆的插入
      • 🚩代码实现:
    • 🛬堆的删除
  • 🎋堆的常见习题
    • 🎈习题一
    • 🎈习题二
    • 🎈习题三
  • 🎄PriorityQueue
    • 🐱‍👓PriorityQueue的特性
  • 🎍PriorityQueue常用接口介绍
    • 🛫优先级队列的构造
      • 🚨注意:
    • 🛬插入/删除/获取优先级最高的元素
    • 🎡PriorityQueue的扩容方式
  • 🌲PriorityQueue面试题---[最小K个数](https://leetcode.cn/problems/smallest-k-lcci/submissions/)
    • 🐱‍👤题目描述:
    • 🐱‍🐉示例与提示:
    • 🐱‍👓思路解析:
    • 🐱‍🏍代码实现:
    • 🚨注意:
  • 🌳堆的应用
    • 🐱‍👤PriorityQueue的实现
    • 🐱‍🐉堆排序
  • 😎拓展(java对象的比较):
    • 🧭基于Comparble接口类的比较
      • 📌基于比较器比较
      • 📌三种方式对比
      • 📌集合框架中PriorityQueue的比较方式
  • 🐱‍👓top-k问题
      • 📌代码实现:
  • ⭕总结

🍀堆的插入与删除

🛫堆的插入

堆的插入总共需要两个步骤:

  1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)

  2. 将最后新插入的节点向上调整,直到满足堆的性质

在这里插入图片描述

🚩代码实现:

public class MyHeap {public void shiftUp(int child,int[] array) {
// 找到child的双亲int parent = (child - 1) / 2;while (child > 0) {
// 如果双亲比孩子大,parent满足堆的性质,调整结束if (array[parent] > array[child]) {break;} else{
// 将双亲与孩子节点进行交换int t = array[parent];array[parent] = array[child];array[child] = t;
// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增child = parent;parent = (child - 1) / 1;}}}
}

🛬堆的删除

注意:堆的删除一定删除的是堆顶元素。具体如下:

  1. 将堆顶元素对堆中最后一个元素交换

  2. 将堆中有效数据个数减少一个

  3. 对堆顶元素进行向下调整

在这里插入图片描述
结合前面博主讲的向下调整代码,这个代码实现就很简单了,这里博主就不展示实现了

🎋堆的常见习题

🎈习题一

  1. 下列关键字序列为堆的是:(A)
    A: 100,60,70,50,32,65 B: 60,70,65,50,32,100 C: 65,100,70,32,50,60
    D: 70,65,100,32,50,60 E: 32,50,100,70,65,60 F: 50,100,70,65,60,32

解析:
通过画图,很容易得到A选项是对的
在这里插入图片描述

🎈习题二

  1. .已知小根堆为8,15,10,21,34,16,12,删除关键字8之后需重建堆,在此过程中,关键字之间的比较次数是(C)

    A: 1 B: 2 C: 3 D: 4

解析:
小根堆如下:
在这里插入图片描述
删除8后
在这里插入图片描述
比较情况:

  • 15与10比较
  • 10与12比较
  • 12与16比较

所以对比次数为三次,答案为C

🎈习题三

  1. 最小堆[0,3,2,5,7,4,6,8],在删除堆顶元素0之后,其结果是(C)
    A: [3,2,5,7,4,6,8] B: [2,3,5,7,4,6,8]
    C: [2,3,4,5,7,8,6] D: [2,3,4,5,6,7,8]

解析:
小根堆如下:
在这里插入图片描述
删除堆顶元素0后为
在这里插入图片描述
接下来向下调整
在这里插入图片描述
所以答案选C

🎄PriorityQueue

🐱‍👓PriorityQueue的特性

Java集合框架中提供了PriorityQueuePriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的PriorityBlockingQueue是线程安全的,本文主要介绍PriorityQueue
在这里插入图片描述
关于PriorityQueue的使用要注意:

  1. 使用时必须导入PriorityQueue所在的包,即:
import java.util.PriorityQueue;
  1. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出
    ClassCastException异常

  2. 不能插入null对象,否则会抛出NullPointerException

  3. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容

  4. 插入和删除元素的时间复杂度为

  5. PriorityQueue底层使用了堆数据结构

  6. PriorityQueue默认情况下是小堆—即每次获取到的元素都是最小的元素

🎍PriorityQueue常用接口介绍

🛫优先级队列的构造

此处只是列出了PriorityQueue中常见的几种构造方式。
在这里插入图片描述

    static void TestPriorityQueue(){
// 创建一个空的优先级队列,底层默认容量是11PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacityPriorityQueue<Integer> q2 = new PriorityQueue<>(100);ArrayList<Integer> list = new ArrayList<>();list.add(4);list.add(3);list.add(2);list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
// q3中已经包含了三个元素PriorityQueue<Integer> q3 = new PriorityQueue<>(list);System.out.println(q3.size());System.out.println(q3.peek());}

🚨注意:

默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器

import java.util.Comparator;
import java.util.PriorityQueue;// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可
class IntCmp implements Comparator<Integer> {@Overridepublic int compare(Integer o1, Integer o2) {return o2-o1;}
}
public class TestPriorityQueue {public static void main(String[] args) {PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());p.offer(4);p.offer(3);p.offer(2);p.offer(1);p.offer(5);System.out.println(p.peek());}
}

🛬插入/删除/获取优先级最高的元素

在这里插入图片描述
测试代码如下:

    static void TestPriorityQueue2(){int[] arr = {4,1,9,2,8,0,7,3,6,5};
// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好
// 否则在插入时需要不多的扩容
// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);for (int e: arr) {q.offer(e);}System.out.println(q.size()); // 打印优先级队列中有效元素个数System.out.println(q.peek()); // 获取优先级最高的元素
// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素q.poll();q.poll();System.out.println(q.size()); // 打印优先级队列中有效元素个数System.out.println(q.peek()); // 获取优先级最高的元素q.offer(0);System.out.println(q.peek()); // 获取优先级最高的元素
// 将优先级队列中的有效元素删除掉,检测其是否为空q.clear();if(q.isEmpty()){System.out.println("优先级队列已经为空!!!");} else {System.out.println("优先级队列不为空");}}

🎡PriorityQueue的扩容方式

以下是JDK 1.8中,PriorityQueue的扩容方式:

    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;private void grow(int minCapacity) {int oldCapacity = queue.length;
// Double size if small; else grow by 50%int newCapacity = oldCapacity + ((oldCapacity < 64) ?(oldCapacity + 2) :(oldCapacity >> 1));
// overflow-conscious codeif (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity);queue = Arrays.copyOf(queue, newCapacity);}private static int hugeCapacity(int minCapacity) {if (minCapacity < 0) // overflowthrow new OutOfMemoryError();return (minCapacity > MAX_ARRAY_SIZE) ?Integer.MAX_VALUE :MAX_ARRAY_SIZE;}

优先级队列的扩容说明:

  • 如果容量小于64时,是按照oldCapacity的2倍方式扩容的

  • 如果容量大于等于64,是按照oldCapacity的1.5倍方式扩容的

  • 如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE来进行扩容

🌲PriorityQueue面试题—最小K个数

🐱‍👤题目描述:

设计一个算法,找出数组中最小的k个数。以任意顺序返回这k个数均可。

🐱‍🐉示例与提示:

在这里插入图片描述

🐱‍👓思路解析:

我们只需要将该数组建堆

然后利用堆的性质输出前k个元素就行

🐱‍🏍代码实现:

class Solution {public int[] smallestK(int[] arr, int k) {if(null == arr || k <= 0)return new int[0];PriorityQueue<Integer> q1 = new PriorityQueue<>();for(int i = 0; i < arr.length; i ++) {q1.offer(arr[i]);}int[] elem = new int[k];for(int i = 0; i < k; i ++) {if(!q1.isEmpty()) {elem[i] = q1.poll();} else {break;}}return elem;}
}

🚨注意:

该解法只是PriorityQueue的简单使用,并不是topK最好的做法

那topk该如何实现?下面介绍

🌳堆的应用

🐱‍👤PriorityQueue的实现

堆作为底层结构封装优先级队列

🐱‍🐉堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤

  1. 建堆
  • 升序:建大堆
  • 降序:建小堆
  1. 利用堆删除思想来进行排序

建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
在这里插入图片描述

😎拓展(java对象的比较):

🧭基于Comparble接口类的比较

Comparble是JDK提供的泛型的比较接口类,源码实现具体如下:

public interface Comparable<E> {// 返回值:// < 0: 表示 this 指向的对象小于 o 指向的对象// == 0: 表示 this 指向的对象等于 o 指向的对象// > 0: 表示 this 指向的对象大于 o 指向的对象int compareTo(E o);
}

对用用户自定义类型,如果要想按照大小与方式进行比较时:在定义类时,实现Comparble接口即可,然后在类中重写compareTo方法

例如以下代码:

public class Card implements Comparable<Card> {public int rank; // 数值public String suit; // 花色public Card(int rank, String suit) {this.rank = rank;this.suit = suit;}// 根据数值比较,不管花色// 这里我们认为 null 是最小的@Overridepublic int compareTo(Card o) {if (o == null) {return 1;}return rank - o.rank;}public static void main(String[] args){Card p = new Card(1, "♠");Card q = new Card(2, "♠");Card o = new Card(1, "♠");System.out.println(p.compareTo(o)); // == 0,表示牌相等System.out.println(p.compareTo(q)); // < 0,表示 p 比较小System.out.println(q.compareTo(p)); // > 0,表示 q 比较大}
}

📌基于比较器比较

按照比较器方式进行比较,具体步骤如下:

  • 用户自定义比较器类,实现Comparator接口
public interface Comparator<T> {// 返回值:
// < 0: 表示 o1 指向的对象小于 o2 指向的对象
// == 0: 表示 o1 指向的对象等于 o2 指向的对象
// > 0: 表示 o1 指向的对象等于 o2 指向的对象int compare(T o1, T o2);
}

注意:区分Comparable和Comparator

  • 覆写Comparator中的compare方法
import java.util.Comparator;
class Card {public int rank; // 数值public String suit; // 花色public Card(int rank, String suit) {this.rank = rank;this.suit = suit;}
}
public class CardComparator implements Comparator<Card> {// 根据数值比较,不管花色
// 这里我们认为 null 是最小的@Overridepublic int compare(Card o1, Card o2) {if (o1 == o2) {return 0;} if(o1 == null) {return -1;}if (o2 == null) {return 1;} return o1.rank - o2.rank;}public static void main(String[] args){Card p = new Card(1, "♠");Card q = new Card(2, "♠");Card o = new Card(1, "♠");
// 定义比较器对象CardComparator cmptor = new CardComparator();
// 使用比较器对象进行比较System.out.println(cmptor.compare(p, o)); // == 0,表示牌相等System.out.println(cmptor.compare(p, q)); // < 0,表示 p 比较小System.out.println(cmptor.compare(q, p)); // > 0,表示 q 比较大}
}

注意:Comparator是java.util 包中的泛型接口类,使用时必须导入对应的包

📌三种方式对比

在这里插入图片描述

📌集合框架中PriorityQueue的比较方式

集合框架中的PriorityQueue底层使用堆结构,因此其内部的元素必须要能够比大小,PriorityQueue采用了:
Comparble和Comparator两种方式。

  1. Comparble是默认的内部比较方式,如果用户插入自定义类型对象时,该类对象必须要实现Comparble接口,并覆写compareTo方法

  2. 用户也可以选择使用比较器对象,如果用户插入自定义类型对象时,必须要提供一个比较器类,让该类实现Comparator接口并覆写compare方法。

// JDK中PriorityQueue的实现:
public class PriorityQueue<E> extends AbstractQueue<E>implements java.io.Serializable {// ...// 默认容量private static final int DEFAULT_INITIAL_CAPACITY = 11;// 内部定义的比较器对象,用来接收用户实例化PriorityQueue对象时提供的比较器对象private final Comparator<? super E> comparator;// 用户如果没有提供比较器对象,使用默认的内部比较,将comparator置为nullpublic PriorityQueue() {this(DEFAULT_INITIAL_CAPACITY, null);} // 如果用户提供了比较器,采用用户提供的比较器进行比较public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) {// Note: This restriction of at least one is not actually needed,// but continues for 1.5 compatibilityif (initialCapacity < 1)throw new IllegalArgumentException();this.queue = new Object[initialCapacity];this.comparator = comparator;} // ...// 向上调整:// 如果用户没有提供比较器对象,采用Comparable进行比较// 否则使用用户提供的比较器对象进行比较private void siftUp(int k, E x) {if (comparator != null)siftUpUsingComparator(k, x);elsesiftUpComparable(k, x);}// 使用Comparable@SuppressWarnings("unchecked")private void siftUpComparable(int k, E x) {Comparable<? super E> key = (Comparable<? super E>) x;while (k > 0) {int parent = (k - 1) >>> 1;Object e = queue[parent];if (key.compareTo((E) e) >= 0)break;queue[k] = e;k = parent;}queue[k] = key;} // 使用用户提供的比较器对象进行比较@SuppressWarnings("unchecked")private void siftUpUsingComparator(int k, E x) {}while (k > 0) {int parent = (k - 1) >>> 1;Object e = queue[parent];if (comparator.compare(x, (E) e) >= 0)break;queue[k] = e;k = parent;}queue[k] = x;
}

🐱‍👓top-k问题

TOP-K问题:即求数据集合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序

但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
  • k个最大的元素,则建小堆
  • k个最小的元素,则建大堆
  1. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

🚨将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素🚨

📌代码实现:

import java.util.Comparator;
import java.util.PriorityQueue;class GreaterIntComp implements Comparator<Integer> {@Overridepublic int compare(Integer o1, Integer o2) {return o2 - o1;}
}
class Solution {public int[] smallestK(int[] arr, int k) {if(null == arr || k <= 0)if(k <= 0) {return new int[k];}GreaterIntComp greaterCmp = new GreaterIntComp();PriorityQueue<Integer> maxHeap = new PriorityQueue<>(greaterCmp);//先将前K个元素,创建大根堆for(int i = 0; i < k; i++) {maxHeap.offer(arr[i]);}//从第K+1个元素开始,每次和堆顶元素比较for (int i = k; i < arr.length; i++) {int top = maxHeap.peek();if(arr[i] < top) {maxHeap.poll();maxHeap.offer(arr[i]);}}//取出前K个int[] ret = new int[k];for (int i = 0; i < k; i++) {int val = maxHeap.poll();ret[i] = val;}return ret;}
}

Compareble是java.lang中的接口类,可以直接使用。

⭕总结

关于《【数据结构】堆的基础功能实现与PriorityQueue》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/69760.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode 92.反转链表II dummy节点的应用

题目 方法 dummy节点 链表的第一个结点&#xff0c;因为没有前驱结点&#xff0c;存在同时删除前驱和后继的情况&#xff0c;这时候我们需要人为构造dummy节点——人为制造出来的第一个结点的前驱结点&#xff0c;也就是说&#xff0c;在可能操作head节点时&#xff0c;我们可…

基于Matlab分析的电力系统可视化研究

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

4.正则提取html中的img标签的src内容

我们以百度贴吧的1吧举例 目录 1 把网页搞下来 2 收集url 3 处理url 4 空的src 5 容错 6 不使用数字作为文件名 7 并不是所有的图片都用img标签表示 8 img标签中src请求下来不一定正确 9 分页 1 把网页搞下来 搞下来之后&#xff0c;双击打开是这样的 2 收…

MySQL5.7慢查询实践

总结 获取慢查询SQL 已经执行完的SQL&#xff0c;检查慢查询日志&#xff0c;日志中有执行慢的SQL正在执行中的SQL&#xff0c;show proccesslist;&#xff0c;结果中有执行慢的SQL 慢查询日志关键参数 名称解释Query_time查询消耗时间Time慢查询发生时间 分析慢查询SQL e…

Linux开源防病毒引擎ClamAV

ClamAV官方地址&#xff1a;https://www.clamav.net 它支持Linux、BSD、windows、Mac OS X等系统。 在CentOS 8&#xff08;Tencent OS 3.1&#xff09;安装非常便利&#xff0c;可以使用yum。 yum install clamav 安装成功&#xff0c;就可以使用它进行病毒扫描检查了。 c…

ArcGIS Engine10.2 Setup 报错

00 问题重述 当我尝试安装ArcGIS Engine时弹出错误&#xff1a;ArcGIs 10,2 Engine cannot be installed on your machine.ArcGIs 10,2 Engine requires Microsoft ,NET Framework 3.5sp1, Which has not been found on your system, If you want to download and install Mic…

算法训练day34|贪心算法 part03(LeetCode 1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果(处理一边再处理一边))

文章目录 1005.K次取反后最大化的数组和思路分析代码实现 134. 加油站暴力方法贪心方法 135. 分发糖果(处理一边再处理一边)思路分析代码实现思考总结 1005.K次取反后最大化的数组和 题目链接&#x1f525; 给定一个整数数组 A&#xff0c;我们只能用以下方法修改该数组&#…

Android样本Repack重打包检测思路

1. 什么是Android样本重打包&#xff0c;为什么要检测重打包 &#xff08;1&#xff09;apk是zip&#xff0c;很容易做repack &#xff08;2&#xff09;repack后&#xff0c;被抄袭&#xff0c;redirect ad&#xff0c;或者插入malicious payloads &#xff08;3&#xff09;…

机器学习_特征工程_特征数据的评价标准

本文主要从 单特征分析&#xff0c;多特征筛选&#xff0c;特征监控&#xff0c;外部特征评估的几个方面对特征数据进行阐述。 来源 &#xff1a; 特征筛选_特征覆盖度怎么算_adamyoungjack的博客-CSDN博客 1. 单特征分析 1.1 简介 好特征可以从几个角度衡量&#xff1a;覆…

springmvc5.x-mvc实现原理及源码实现

上文&#xff1a;spring5.x-声明式事务原理及源码实现 系列文章&#xff1a; spring5.x-声明式事务原理及源码实现 spring5.x-AOP实现原理及源码分析 spring5.x-监听器原理及源码实现 spring5.x-解决循环依赖分析 spring5.x-IOC模块源码学习 spring5.x介绍及搭配spring源码阅读…

python实现语音识别

1. 首先安装依赖库 pip install playsound # 该库用于播放音频文件 pip install speech_recognition # 该库用于语音识别 pip install PocketSphinx # 语音识别模块中只有sphinx支持离线的&#xff0c;使用该模块需单独安装 pip install pyttsx3 # 该库用于将文本转换为语音播…

app自动化测试(Android)

Capability 是一组键值对的集合&#xff08;比如&#xff1a;"platformName": "Android"&#xff09;。Capability 主要用于通知 Appium 服务端建立 Session 需要的信息。客户端使用特定语言生成 Capabilities&#xff0c;最终会以 JSON 对象的形式发送给 …

【C语言】入门——指针

目录 ​编辑 1.指针是什么 2.指针类型和指针运算 2.1指针-整数 2.2指针-指针 2.3指针的关系运算 3.野指针 3.1野指针成因 &#x1f44d;指针未初始化&#xff1a; &#x1f44d;指针越界访问&#xff1a; &#x1f44d;指针指向空间释放&#xff1a; 3.2如何规避野指针 …

以antd为例 React+Typescript 引入第三方UI库

本文 我们来说说 第三方UI库 其实应用市场上的 第三方UI库都是非常优秀的 那么 react 我们比较熟的肯定还是 antd 我们还是来用它作为演示 这边 我们先访问他的官网 https://3x.ant.design/index-cn 点击开始使用 在左侧 有一个 在 TypeScript 中使用 通过图标我们也可以看出…

【Linux从入门到精通】通信 | 管道通信(匿名管道 命名管道)

本派你文章主要是对进程通信进行详解。主要内容是介绍 为什么通信、怎么进行通信。其中本篇文章主要讲解的是管道通信。希望本篇文章会对你有所帮助。 文章目录 一、进程通信简单介绍 1、1 什么是进程通信 1、2 为什么要进行通信 1、3 进程通信的方式 二、匿名管道 2、1 什么是…

【OpenCV入门】第七部分——图像的几何变换

文章结构 缩放dsize参数实现缩放fx参数和fy参数实现缩放 翻转仿射变换平移旋转倾斜 透视cmath模块 缩放 通过resize()方法可以随意更改图像的大小比例&#xff1a; dst cv2.resize(src, dsize, fx, fy, interpolation)src&#xff1a; 原始图像dsize&#xff1a; 输出图像的…

华为云云服务器评测|云耀云服务器L实例快速部署MySQL使用指南

文章目录 前言云耀云服务器L实例介绍什么是云耀云服务器L实例&#xff1f;产品优势智能不卡顿价优随心用上手更简单管理更省心 快速购买查看优惠卷购买 安装MySQL重置密码安装更新apt的软件源列表安装MySQL 设置用户名、密码、权限配置安全组 总结 前言 哈喽大家好&#xff0c…

设置Linux CentOS7桥接模式连网

在虚拟机上安装centos7系统后&#xff0c;首要任务就是设置网络。 我们在文章《设置linux centos7连接网络》中讨论了如何设置NAT模式连网。本文讨论如何在设置好NAT模式后&#xff0c;调换为桥接模式。 仍采用图形化方式设置方法。 一、查看物理机网络 把虚拟机设置为桥接…

Doris workload group实战

1.创建测试用户&#xff1a;创建一个用户名为test&#xff0c;密码为test 的用户&#xff1a; create user test% IDENTIFIED BY test;给测试用户赋权&#xff1a;给用户test赋予数据库test.* 权限 grant SELECT_PRIV,LOAD_PRIV,CREATE_PRIV,ALTER_PRIV ON test.* TO test;开…

信息系统概述-生命周期-开发方法

信息系统概述-生命周期 考点分析信息系统概述信息系统分类企业目前所使用的具体的信息化系统信息系统的生命周期&#xff08;重要&#xff09;信息系统的开发方法&#xff08;重要&#xff09; 考点分析 每年都会考3分&#xff0c;2分会超纲 信息系统概述 信息系统分类 业务处理…