【OpenCV入门】第七部分——图像的几何变换

文章结构

  • 缩放
    • dsize参数实现缩放
    • fx参数和fy参数实现缩放
  • 翻转
  • 仿射变换
    • 平移
    • 旋转
    • 倾斜
  • 透视
  • cmath模块

缩放

通过resize()方法可以随意更改图像的大小比例:

dst = cv2.resize(src, dsize, fx, fy, interpolation)
  • src: 原始图像
  • dsize: 输出图像的大小,格式为(宽,高),单位为像素
  • fx: (可选)水平方向的缩放比例
  • fy: (可选)竖直方向的缩放比例
  • interpolation: (可选)缩放的插值方式,在图像缩小或放大时需要删减或补充像素,该参数可以指定使用哪种算法对像素进行增减,建议使用默认值
  • dst: 缩放之后的图像

resize()方法有两种使用方式,一种时通过dsize参数实现缩放,另一种时通过fx和fy参数实现缩放。

dsize参数实现缩放

dsize参数的格式是一个元组,例如(100,200),表示将图像按照宽100像素、高200像素的大小进行缩放。如果使用dsize参数,就可以不写fx和fy参数。

实例1: 将图像按照指定宽高进行缩放

import cv2img = cv2.imread("3.png")  # 读取图像
dst1 = cv2.resize(img, (100, 100))  # 按照宽100像素、高100像素的大小进行缩放
dst2 = cv2.resize(img, (400, 400))  # 按照宽400像素、高400像素的大小进行缩放
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst1", dst1)  # 显示缩放图像
cv2.imshow("dst2", dst2)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

fx参数和fy参数实现缩放

使用fx参数和fy参数控制缩放时,dsize参数值必须使用None,否则fx和fy会失效。fx参数和fy参数可以使用浮点值,小于1的值表示缩小,大于1的值表示放大。其计算公式为:

  • 新图像宽度 = round( fx × 原图像宽度)
  • 新图像高度 = round( fy × 原图像高度)

实例2: 将图像按照指定比例进行缩放

import cv2img = cv2.imread("3.png")  # 读取图像
# 将宽缩小到原来的1/3、高缩小到原来的1/2
dst3 = cv2.resize(img, None, fx=1/3, fy=1/2)
dst4 = cv2.resize(img, None, fx=1.5, fy=1.5)  # 将宽高扩大1.5倍
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst3", dst3)  # 显示缩放图像
cv2.imshow("dst4", dst4)  # 显示缩放图像
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

翻转

水平方向被称为X轴,垂直方向被称为Y轴。图像沿着X轴或者Y轴反转之后,可以呈现出镜面倒影的效果。

dst = cv2.flip(src, flipCode)
  • src: 原始图像
  • flipCode: 翻转类型
  • dst: 翻转之后的图像

flipCode参数值及含义:

参数值含义
0沿着X轴翻转
正数沿着Y轴翻转
负数同时沿着X轴、Y轴翻转

实例3: 同时实现三种翻转效果

import cv2img = cv2.imread("3.png")  # 读取图像
dst1 = cv2.flip(img, 0)  # 沿X轴翻转
dst2 = cv2.flip(img, 1)  # 沿Y轴翻转
dst3 = cv2.flip(img, -1)  # 同时沿X轴、Y轴翻转
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst1", dst1)  # 显示翻转之后的图像
cv2.imshow("dst2", dst2)
cv2.imshow("dst3", dst3)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

仿射变换

仿射变换是一种仅在二维平面中发生的几何变形,变换之后的图像仍然可以保持直线的“平直性”和“平行性”,包含平移、旋转和倾斜。

在这里插入图片描述

dst = cv2.warpAffine(src, M, dsize, flags, borderMode, borderValue)
  • src: 原始图像。
  • M: 一个2行3列的矩阵,根据此矩阵的值变换原图中的像素位置。
  • dsize: 输出图像的尺寸大小。
  • flags: 可选参数,插值方式,建议使用默认值。
  • borderMode: (可选)边界类型,建议使用默认值。
  • borderValue: (可选)边界值,默认为0,建议使用默认值返回值说明:
  • dst: 经过仿射变换后输出图像

M也被叫作仿射矩阵,实际上就是一个2x3的列表,其格式如下所示:

M = [[a, b, c], [d, e, f]]

图像做何种仿射变换,完全取决于 M 的值,仿射变换输出的图像会按照以下公式进行计算:

  • 新x = 原x × a + 原y × b + c
  • 新y = 原x × d + 原y × e + f

M矩阵中的数字采用32位浮点格式。可以采用两种方式创建M。

  • 创建一个全是0的M
import numpy as np
M = np.zeros((2,3), np.float32)
  • 创建M的同时赋予具体值
import numpy as np
M = np.float32([[1, 2 ,3], [4, 5, 6]])

通过设定M的值就可以实现多种仿射效果

平移

平移就是让图像中所有的像素同时沿着水平或垂直方向移动。实现这种效果只需要将M的值按照以下格式进行设置:

M = [[1, 0, 水平移动的距离],[0, 1, 垂直移动的距离]]

原始图像的像素就会按照以下公式进行变换:

  • 新x = 原x × 1 + 原y × 0 + 水平移动的距离
  • 新y = 原x × 0 + 原y × 1 + 垂直移动的距离

实例4: 让图像向右下方平移

import cv2
import numpy as npimg = cv2.imread("3.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
M = np.float32([[1, 0, 50],  # 横坐标向右移动50像素[0, 1, 100]])  # 纵坐标向下移动100像素
dst = cv2.warpAffine(img, M, (cols, rows))
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

旋转

让图像旋转也是通过M矩阵实现的,但得出这个矩阵需要做很复杂的计算,于是OpenCV提供了getRotationMatrix2D()方法来自动计算出旋转图像的M矩阵。

M = cv2.getRotationMatrix2D(center, angle, scale)
  • center: 旋转的中心点坐标
  • angle: 旋转的角度(不是弧度),正数表示逆时针旋转,负数表示顺时针旋转
  • scale: 缩放比例,浮点类型,如果取值1,表示图像保持原来的比例
  • M: 方法计算出的仿射矩阵

实例5: 让图像逆时针旋转

import cv2img = cv2.imread("3.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
center = (rows/2, cols/2)  # 图像的中心点
# 以图像为中心,逆时针旋转30度,缩放0.8倍
M = cv2.getRotationMatrix2D(center, 30, 0.8)
dst = cv2.warpAffine(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述

倾斜

OpenCV需要定位图像的三个点来计算倾斜效果,三个点的位置如下图所示:
在这里插入图片描述
OpenCV会根据这三个点的位置变化来计算其他像素的位置变化。因为要保证图像的“平直性”和“平行性”,所以不需要“右下角”的点做第四个参数,右下角这个点的位置会根据 A、B、C 三点的变化自动计算得出。

让图像倾斜也是需要通过M矩阵实现的,但得出这个矩阵需要做很复杂的运算,于是 OpenCV提供了getAffineTransform()方法来自动计算出倾斜图像的M矩阵。

M = cv2.getAffineTransform(src, dst)
  • src: 原图三个点坐标,格式为 3行2列的 32 位浮点数列表,例如: [[0,1] [1,0],[1,1]]
  • dst: 倾斜图像的三个点坐标,格式与 src 一样。
  • M: 方法计算出的仿射矩阵

实例6: 让图像向右倾斜

import cv2
import numpy as npimg = cv2.imread("3.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
p1 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,原图三个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p2 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,倾斜图三个点
p2[0] = [50, 0]  # 左上角点坐标,向右挪50像素
p2[1] = [cols - 1, 0]  # 右上角点坐标,位置不变
p2[2] = [0, rows - 1]  # 左下角点坐标,位置不变
M = cv2.getAffineTransform(p1, p2)  # 根据三个点的变化轨迹计算出M矩阵
dst = cv2.warpAffine(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:

在这里插入图片描述
想让图像向左倾斜,不能通过移动A点来实现,需要通过移动B点和C点来实现:

p1 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,原图三个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p2 = np.zeros((3, 2), np.float32)  # 32位浮点型空列表,倾斜图三个点
p2[0] = [0, 0]  # 左上角点坐标,位置不变
p2[1] = [cols - 1 - 50, 0]  # 右上角点坐标,向左移动50像素
p2[2] = [50, rows - 1]  # 左下角点坐标,向右移动50像素

透视

如果说仿射是让图像在二维平面中变形,那么透视就是让图像在三维空间中变形。从不同的角度观察物体,会看到不同的变形画面,例如矩形会变成不规则的四边形、直角会变成锐角或钝角、圆形会变成椭圆等。这种变形之后的画面就是透视图。

如图 8.24 所示从图像的底部去观察图 8.25 的话,图像底部距离眼睛较近,所以宽度不变。但图像顶部距离眼睛较远,宽度就会等比缩小,于是观察者就会看到如图 8.26 所示的透视效果。

在这里插入图片描述
OpenCV中需要通过定位图像的四个点来计算透视效果,四个点的位置如下图所示。OpenCV会根据这四个点的位置变化计算出其他像素的位置变化。透视效果不能保证图像的“平直性”和“平行性”。

在这里插入图片描述

dst = cv2.warpPerspective(src, M, dsize, flags, borderMode, borderValue)
  • src: 原始图像
  • M: 一个3 行 3 列的矩阵,根据此矩阵的值变换原图中的像素位置
  • dsize: 输出图像的尺寸大小。
  • flags: (可选)插值方式,建议使用默认值。
  • borderMode: (可选)边界类型,建议使用默认值。
  • borderValue: (可选)边界值,默认为 0,建议使用默认值
  • dst: 经过透视变换后输出图像。

warpPerspective() 方法也需要通过 M矩阵来计算透视效果,但得出这个矩阵需要做很复杂的运算,于是OpenCV 提供了getPerspectiveTransform() 方法来自动计算M矩阵。

M = cv2.getPerspectiveTransform(src, dst)
  • src: 原图四个点坐标,格式为4行2列的32位浮点数列表,例如[[0,0],[0,1],[1,0][1,1]]
  • dst: 透视图的四个点坐标,格式与 src一样
  • M: 方法计算出的仿射矩阵

实例7: 模拟从底部观察图像得到的透视效果

import cv2
import numpy as npimg = cv2.imread("demo.png")  # 读取图像
rows = len(img)  # 图像像素行数
cols = len(img[0])  # 图像像素列数
p1 = np.zeros((4, 2), np.float32)  # 32位浮点型空列表,保存原图四个点
p1[0] = [0, 0]  # 左上角点坐标
p1[1] = [cols - 1, 0]  # 右上角点坐标
p1[2] = [0, rows - 1]  # 左下角点坐标
p1[3] = [cols - 1, rows - 1]  # 右下角点坐标
p2 = np.zeros((4, 2), np.float32)  # 32位浮点型空列表,保存透视图四个点
p2[0] = [90, 0]  # 左上角点坐标,向右移动90像素
p2[1] = [cols - 90, 0]  # 右上角点坐标,向左移动90像素
p2[2] = [0, rows - 1]  # 左下角点坐标,位置不变
p2[3] = [cols - 1, rows - 1]  # 右下角点坐标,位置不变
M = cv2.getPerspectiveTransform(p1, p2)  # 根据四个点的变化轨迹计算出M矩阵
dst = cv2.warpPerspective(img, M, (cols, rows))  # 按照M进行仿射
cv2.imshow("img", img)  # 显示原图
cv2.imshow("dst", dst)  # 显示仿射变换效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

结果如下:
在这里插入图片描述

** 实例8:** 生成图书封面俯视图

import cv2
import numpy as npw, h = 320, 480 # 俯视图的宽高
img = cv2.imread("book.jpg") # 读取原图
tmp = cv2.GaussianBlur(img, (5, 5), 0) # 高斯滤波
tmp = cv2.Canny(tmp, 50, 120) # 变为二值边缘图像
# 闭运算,保证边缘闭合
tmp = cv2.morphologyEx(tmp, cv2.MORPH_CLOSE, (15, 15), iterations=2)
# 检测轮廓
contours, _ = cv2.findContours(tmp, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in contours: # 遍历所有轮廓area = cv2.contourArea(c) # 计算轮廓面积if area > 10000: # 只处理面积廓大于10000的轮廓length = cv2.arcLength(c, True) # 获取轮廓周长approx = cv2.approxPolyDP(c, 0.02 * length, True) # 计算出轮廓的端点pts1 = np.float32(approx) # 轮廓四个端点的坐标pts2 = np.float32([[w, 0], [0, 0], [0, h], [w, h]]) # 正面图对应的四个端点坐标M = cv2.getPerspectiveTransform(pts1, pts2) # 创建透视图M矩阵tmp = cv2.warpPerspective(img, M, (w, h)) # 根据M矩阵做透视变换
cv2.imshow("img", img) # 展示原图
cv2.imshow("Top view", tmp) # 展示俯视图
cv2.waitKey() # 按下任何按键后
cv2.destroyAllWindows() # 释放所有窗体

结果如下:

在这里插入图片描述

cmath模块

除了前述 OpenCV 提供的用于对图像进行几何变换的方法外,借助 Python 中的 cmath模块也能让图像呈现特定的视觉效果。例如让图像呈现波浪效果等。

通过 Python 中的 cmath 模块就能够让图像呈现波浪效果。cmath 模块提供了数学函数在复数域上扩展的运算函数,这些函数允许复数、整数、浮点数等数据类型的数据输入,因此这些函数的返回值也都是复数。要特别注意的是,组成复数的实部和虚部都是浮点数。

这里要用到的是 cmath 模块中用于返回指定弧度的正弦值的 sin()方法

cmath.sin(x)
  • x: 与指定角度对应的弧度

在 cmath 模块中的 sin()方法中,还可以设置与正弦函数对应的正弦图像的振幅和波长。例如把一幅图像的列像素 col 作为弧度,设置与正弦函数对应的正弦图像的振幅为 20、波长为30的关键代码如下所示:

20 * cmath.sin(col/15) # 15是一半的波长

实例9: 呈现波浪效果的图像

import cv2
import numpy as np
import cmathimg = cv2.imread("rice.jpg") # 读取当前项目目录下的图像
shape = img.shape # 获取图像的行像素、列像素和通道数
rows = shape[0] # 获取图像的行像素
columns = shape[1] # 获取图像的列像素
channel = shape[2] # 获取图像的通道数
# 创建了一个行像素与图像的行像素相同,列像素与图像的列像素相同,具有3个通道的画布
canvas = np.zeros([rows, columns, channel], np.uint8)
for row in range(rows): # 遍历图像的行像素for col in range(columns): # 遍历图像的列像素# 20是波的振幅,15是一半的波长# 根据正弦函数计算每个像素点的横坐标移动后的位置i = row + 20 * cmath.sin(col/15)i = round(np.real(i))  # 将复数结果转为实数,并四舍五入if 0 <= i < rows:  # 如果移动后的像素点仍在画布范围内canvas[i, col] = img[row, col] # 将原图像的像素点存放到与画布对应的像素点上
cv2.imshow("wave", canvas) # 在一个名为“wave”的窗口中显示呈现波浪效果的图像
cv2.waitKey() # 通过按下键盘上的按键
cv2.destroyAllWindows() # 销毁正在显示的窗口

结果如下:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/69739.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华为云云服务器评测|云耀云服务器L实例快速部署MySQL使用指南

文章目录 前言云耀云服务器L实例介绍什么是云耀云服务器L实例&#xff1f;产品优势智能不卡顿价优随心用上手更简单管理更省心 快速购买查看优惠卷购买 安装MySQL重置密码安装更新apt的软件源列表安装MySQL 设置用户名、密码、权限配置安全组 总结 前言 哈喽大家好&#xff0c…

设置Linux CentOS7桥接模式连网

在虚拟机上安装centos7系统后&#xff0c;首要任务就是设置网络。 我们在文章《设置linux centos7连接网络》中讨论了如何设置NAT模式连网。本文讨论如何在设置好NAT模式后&#xff0c;调换为桥接模式。 仍采用图形化方式设置方法。 一、查看物理机网络 把虚拟机设置为桥接…

Doris workload group实战

1.创建测试用户&#xff1a;创建一个用户名为test&#xff0c;密码为test 的用户&#xff1a; create user test% IDENTIFIED BY test;给测试用户赋权&#xff1a;给用户test赋予数据库test.* 权限 grant SELECT_PRIV,LOAD_PRIV,CREATE_PRIV,ALTER_PRIV ON test.* TO test;开…

信息系统概述-生命周期-开发方法

信息系统概述-生命周期 考点分析信息系统概述信息系统分类企业目前所使用的具体的信息化系统信息系统的生命周期&#xff08;重要&#xff09;信息系统的开发方法&#xff08;重要&#xff09; 考点分析 每年都会考3分&#xff0c;2分会超纲 信息系统概述 信息系统分类 业务处理…

时间序列分析:掌握平稳性的概念

摄影&#xff1a;Chris Lawton on Unsplash 一、说明 平稳性是时间序列问题中的一个关键概念。它是指统计属性&#xff08;如均值、方差和协方差&#xff09;随时间变化的稳定性。为了建立有效的预测模型并确定时间序列数据中有意义的模式&#xff0c;了解平稳性的概念以及它与…

Spring MVC 之MVC 体系结构、什么是SpringMVC

Spring MVC简介 MVC 体系结构三层架构MVC设计模式 Spring MVC 是什么&#xff1f;扩展知识Spring模块Data Access/Integration&#xff08;数据访问/集成&#xff09;Web&#xff08;网络层&#xff09;AOP&#xff08;面向切面&#xff09;Messaging&#xff08;消息传送&…

文字验证码:简单有效的账号安全守卫!

前言 文字验证码不仅是一种简单易懂的验证方式&#xff0c;同时也是保护您的账号安全的重要工具。通过输入正确的文字组合&#xff0c;您可以有效地确认自己的身份&#xff0c;确保只有真正的用户才能访问您的账号。 HTML代码 <script src"https://cdn6.kgcaptcha.…

java八股文面试[数据库]——Page页的结构

mysql中数据是存储在物理磁盘上的&#xff0c;而真正的数据处理又是在内存中执行的。由于磁盘的读写速度非常慢&#xff0c;如果每次操作都对磁盘进行频繁读写的话&#xff0c;那么性能一定非常差。为了上述问题&#xff0c;InnoDB将数据划分为若干页&#xff0c;以页作为磁盘与…

算法通关村第十九关——最小路径和

LeetCode64. 给定一个包含非负整数的 m n 网格 grid,请找出一条从左上角到右下角的路径&#xff0c;使得路径上的数字总和为最小。 输入&#xff1a;grid[[1,3,1],[1,5,1],[4,2,1]] 输出&#xff1a;7 解释&#xff1a;因为路径1→3→1→1→1的总和最小。 public int minPath…

Qt鼠标点击事件处理:按Escape键退出程序

创建项目 Qt 入门实战教程&#xff08;目录&#xff09; 首先&#xff0c;创建一个名称为QtKeyEscape的Qt默认的窗口程序。 参考 &#xff1a;Qt Creator 创建 Qt 默认窗口程序 Qt响应键盘Escape事件 打开Qt Creator >>编辑 >> 项目 >> Headers>> …

【iVX】iVX的低代码未来发展趋势:加速应用开发的创新之路

简介&#xff1a; 随着数字化转型的飞速发展&#xff0c;企业和组织对快速开发和交付高质量应用的需求越来越迫切。低代码开发平台作为一种创新的解决方案&#xff0c;极大地简化了应用程序的开发过程。在这一领域&#xff0c;iVX低代码平台作为领先的创业公司&#xff0c;正在…

Python小知识 - Python爬虫进阶:如何克服反爬虫技术

Python爬虫进阶&#xff1a;如何克服反爬虫技术 爬虫是一种按照一定的规则&#xff0c;自动抓取网页信息的程序。爬虫也叫网页蜘蛛、蚂蚁、小水滴&#xff0c;是一种基于特定算法的自动化程序&#xff0c;能够按照一定的规则自动的抓取网页中的信息。爬虫程序的主要作用就是从一…

记录 使用 git 克隆仓库报错:Warning: Permanently added‘github.com’ to the .....(ssh )

解决方法&#xff1a; 1. 新建空文件夹->右键->点击 Git Bash Here2. 输入 cd C&#xff1a;3. 输入 cat ~/.ssh/id_rsa.pub4. 输入 ssh-keygen重复回车&#xff0c;生成一个矩形&#xff0c;则说明公钥已经生成了。重复步骤3&#xff0c;生成publickey&#xff0c;右键…

Vue2基础学习

vue基础学习 Vue基础指令v-show 和 v-ifv-on指令v-bind指令v-bind操作classv-bind 操作stylev-for 指令练习&#xff1a;图书管理案例v-modelv-model原理 指令修饰符v-model指令修饰符click.stop-》阻止冒泡按键修饰符阻止默认行为 计算属性计算属性简写computed计算属性VS方法…

HTML 标签讲解

HTML 标签讲解 HTML 语言结构根元素元数据元素主体根元素大纲元素文本内容语义化内联文本图像与多媒体编辑标识table表格内容表单内容table表单 HTML 语言结构 Markup &#xff08;标记、标签&#xff09;用来容纳和描述内容 严格意义上&#xff0c;标签是指开始标签&#xf…

优化爬虫效率:利用HTTP代理进行并发请求

网络爬虫作为一种自动化数据采集工具&#xff0c;广泛应用于数据挖掘、信息监测等领域。然而&#xff0c;随着互联网的发展和网站的增多&#xff0c;单个爬虫往往无法满足大规模数据采集的需求。为了提高爬虫的效率和性能&#xff0c;我们需要寻找优化方法。本文将介绍一种利用…

企业无线局域网部署最佳实践

文章目录 企业无线局域网部署最佳实践引言1. 无线网规划和设计a. 选择合适的频宽b. 网络规划工具c. 考虑物理环境d. 用户密度和需求e. 未来扩展f. 安全性和策略g. 测试和验证2. 无线局域网容量2.1 用户和设备预测2.2 应用流量分析2.3 带宽管理2.4 无线技术选择2.5 网络健康检查…

鳄鱼指标和ADX组合后,发现买卖信号真清晰

通过之前的文章分享&#xff0c;anzo capital昂首资本相信各位投资者对ADX已经有了深刻的理解&#xff0c;今天在后台有小伙伴分享了鳄鱼指标&#xff0c;没想到的是&#xff0c;鳄鱼指标和ADX组合后&#xff0c;买卖信号变的更清晰了&#xff0c;今天就分享一下。 鳄鱼指标是一…

uni-app 之 vue语法

uni-app 之 vue语法 image.png --- v-html 字符 --- image.png <template><view><view>{{title}}</view>--- v-html 字符 ---<view>{{title2}}</view><view v-html"title2"></view><view>{{arr}}</view&g…

垃圾回收 - 标记压缩算法

压缩算法是将标记清除算法与复制算法相结合的产物。 1、什么是标记压缩算法 标记压缩算法是由标记阶段和压缩阶段构成。 首先&#xff0c;这里的标记阶段和标记清除算法时提到的标记阶段完全一样。 接下来我们要搜索数次堆来进行压缩。压缩阶段通过数次搜索堆来重新填充活动对…