rabbitmq知识梳理

一.WorkQueues模型

Work queues,任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息

在这里插入图片描述
当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。
此时就可以使用work 模型,多个消费者共同处理消息处理,消息处理的速度就能大大提高了。
接下来,我们就来模拟这样的场景。
首先,我们在控制台创建一个新的队列,命名为work.queue
在这里插入图片描述

1.消息发送

这次我们循环发送,模拟大量消息堆积现象。
在publisher服务中的SpringAmqpTest类中添加一个测试方法:

 /*** workQueue* 向队列中不停发送消息,模拟消息堆积。*/@Testpublic void testWorkQueue() throws InterruptedException {// 队列名称String queueName = "work.queue";// 消息String message = "hello, message_";for (int i = 0; i < 50; i++) {// 发送消息,每20毫秒发送一次,相当于每秒发送50条消息rabbitTemplate.convertAndSend(queueName, message + i);Thread.sleep(20);}}

2.消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

@RabbitListener(queues = "work.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(20);
}@RabbitListener(queues = "work.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());Thread.sleep(200);
}
注意到这两消费者,都设置了`Thead.sleep`,模拟任务耗时:
  • 消费者1 sleep了20毫秒,相当于每秒钟处理50个消息
  • 消费者2 sleep了200毫秒,相当于每秒处理5个消息

在这里插入图片描述
可以看到消费者1和消费者2竟然每人消费了25条消息:

  • 消费者1很快完成了自己的25条消息
  • 消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。导致1个消费者空闲,另一个消费者忙的不可开交。没有充分利用每一个消费者的能力,最终消息处理的耗时远远超过了1秒。这样显然是有问题的。

3.能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:rabbitmq:listener:simple:prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

在这里插入图片描述
可以发现,由于消费者1处理速度较快,所以处理了更多的消息;消费者2处理速度较慢,只处理了6条消息。而最终总的执行耗时也在1秒左右,大大提升。正所谓能者多劳,这样充分利用了每一个消费者的处理能力,可以有效避免消息积压问题。

4.总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
  • 通过设置prefetch来控制消费者预取的消息数量

二.交换机类型

在之前的两个测试案例中,都没有交换机,生产者直接发送消息到队列。而一旦引入交换机,消息发送的模式会有很大变化:
在这里插入图片描述

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,不再发送消息到队列中,而是发给交换机
  • Exchange:交换机,一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。
  • Queue:消息队列也与以前一样,接收消息、缓存消息。不过队列一定要与交换机绑定。
  • Consumer:消费者,与以前一样,订阅队列,没有变化

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

交换机的类型有四种:

  • Fanout:广播,将消息交给所有绑定到交换机的队列。我们最早在控制台使用的正是Fanout交换机
  • Direct:订阅,基于RoutingKey(路由key)发送给订阅了消息的队列
  • Topic:通配符订阅,与Direct类似,只不过RoutingKey可以使用通配符
  • Headers:头匹配,基于MQ的消息头匹配,用的较少。

本次记录前面的三种交换机模式。

1.Fanout交换机

说明

Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。
在广播模式下,消息发送流程是这样的:
在这里插入图片描述

  • 1) 可以有多个队列
  • 2) 每个队列都要绑定到Exchange(交换机)
  • 3) 生产者发送的消息,只能发送到交换机
  • 4) 交换机把消息发送给绑定过的所有队列
  • 5) 订阅队列的消费者都能拿到消息
    我们的计划是这样的:
    在这里插入图片描述
  • 创建一个名为 hmall.fanout的交换机,类型是Fanout
  • 创建两个队列fanout.queue1fanout.queue2,绑定到交换机hmall.fanout

1.在控制台增加两个新的队列

在这里插入图片描述
然后再创建一个交换机:
在这里插入图片描述
然后绑定两个队列到交换机:
在这里插入图片描述

测试

1.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testFanoutExchange() {// 交换机名称String exchangeName = "hmall.fanout";// 消息String message = "hello, everyone!";rabbitTemplate.convertAndSend(exchangeName, "", message);
}

2.消息接收

在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:

@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}

在这里插入图片描述

3.总结

交换机的作用是什么?

  • 接收publisher发送的消息
  • 将消息按照规则路由到与之绑定的队列
  • 不能缓存消息,路由失败,消息丢失
  • FanoutExchange的会将消息路由到每个绑定的队列

2.Direct交换机

说明

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。
在这里插入图片描述
在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)
  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey
  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

案例需求如图
在这里插入图片描述

  1. 声明一个名为hmall.direct的交换机
  2. 声明队列direct.queue1,绑定hmall.directbindingKeybludred
  3. 声明队列direct.queue2,绑定hmall.directbindingKeyyellowred
  4. consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2
  5. 在publisher中编写测试方法,向hmall.direct发送消息

声明队列和交换机

首先在控制台声明两个队列direct.queue1direct.queue2
在这里插入图片描述
然后声明一个direct类型的交换机,命名为hmall.direct:
在这里插入图片描述
然后使用redblue作为key,绑定direct.queue1hmall.direct
同理,使用redyellow作为key,绑定direct.queue2hmall.direct,步骤略,最终结果:
在这里插入图片描述

测试

1.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testSendDirectExchange() {// 交换机名称String exchangeName = "hmall.direct";// 消息String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "red", message);
}

2.消息接收

在consumer服务的SpringRabbitListener中添加方法:

@RabbitListener(queues = "direct.queue1")
public void listenDirectQueue1(String msg) {System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(queues = "direct.queue2")
public void listenDirectQueue2(String msg) {System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}

由于使用的red这个key,所以两个消费者都收到了消息:
在这里插入图片描述
我们再切换为blue这个key:
在这里插入图片描述

3.总结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列
  • Direct交换机根据RoutingKey判断路由给哪个队列
  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

3.Topic交换机

说明

Topic类型的ExchangeDirect相比,都是可以根据RoutingKey把消息路由到不同的队列。
只不过Topic类型Exchange可以让队列在绑定RoutingKey 的时候使用通配符!

RoutingKey 一般都是有一个或多个单词组成,多个单词之间以.分割,例如: item.insert

通配符规则:

  • #:匹配一个或多个词
  • *:匹配不多不少恰好1个词

举例:

  • item.#:能够匹配item.spu.insert 或者 item.spu
  • item.*:只能匹配item.spu

在这里插入图片描述

测试

假如此时publisher发送的消息使用的RoutingKey共有四种:

  • china.news 代表有中国的新闻消息;
  • china.weather 代表中国的天气消息;
  • japan.news 则代表日本新闻
  • japan.weather 代表日本的天气消息;

解释:

  • topic.queue1:绑定的是china.# ,凡是以 china.开头的routing key 都会被匹配到,包括:
    • china.news
    • china.weather
  • topic.queue2:绑定的是#.news ,凡是以 .news结尾的 routing key 都会被匹配。包括:
    • china.news
    • japan.news

接下来,我们就按照上图所示,来演示一下Topic交换机的用法。
首先,在控制台按照图示例子创建队列、交换机,并利用通配符绑定队列和交换机。此处步骤略。最终结果如下:
在这里插入图片描述

1.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

/*** topicExchange*/
@Test
public void testSendTopicExchange() {// 交换机名称String exchangeName = "hmall.topic";// 消息String message = "喜报!孙悟空大战哥斯拉,胜!";// 发送消息rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}

2.消息接收

@RabbitListener(queues = "topic.queue1")
public void listenTopicQueue1(String msg){System.out.println("消费者1接收到topic.queue1的消息:【" + msg + "】");
}@RabbitListener(queues = "topic.queue2")
public void listenTopicQueue2(String msg){System.out.println("消费者2接收到topic.queue2的消息:【" + msg + "】");
}

在这里插入图片描述

3.总结

描述下Direct交换机与Topic交换机的差异?

  • Topic交换机接收的消息RoutingKey必须是多个单词,以 **.** 分割
  • Topic交换机与队列绑定时的bindingKey可以指定通配符
  • #:代表0个或多个词
  • *:代表1个词

4.声明队列和交换机

在之前我们都是基于RabbitMQ控制台来创建队列、交换机。但是在实际开发时,队列和交换机是程序员定义的,将来项目上线,又要交给运维去创建。那么程序员就需要把程序中运行的所有队列和交换机都写下来,交给运维。在这个过程中是很容易出现错误的。
因此推荐的做法是由程序启动时检查队列和交换机是否存在,如果不存在自动创建。

1.基本API

SpringAMQP提供了一个Queue类,用来创建队列
在这里插入图片描述
SpringAMQP还提供了一个Exchange接口,来表示所有不同类型的交换机:
在这里插入图片描述
在这里插入图片描述
我们可以自己创建队列和交换机,不过SpringAMQP还提供了ExchangeBuilder来简化这个过程:
在这里插入图片描述

在这里插入图片描述
而在绑定队列和交换机时,则需要使用BindingBuilder来创建Binding对象:在这里插入图片描述
在这里插入图片描述

1.fanout示例

import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class FanoutConfig {/*** 声明交换机* @return Fanout类型交换机*/@Beanpublic FanoutExchange fanoutExchange(){return new FanoutExchange("hmall.fanout");}/*** 第1个队列*/@Beanpublic Queue fanoutQueue1(){return new Queue("fanout.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);}/*** 第2个队列*/@Beanpublic Queue fanoutQueue2(){return new Queue("fanout.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);}
}

2.direct示例

direct模式由于要绑定多个KEY,会非常麻烦,每一个Key都要编写一个binding:

import org.springframework.amqp.core.*;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class DirectConfig {/*** 声明交换机* @return Direct类型交换机*/@Beanpublic DirectExchange directExchange(){return ExchangeBuilder.directExchange("hmall.direct").build();}/*** 第1个队列*/@Beanpublic Queue directQueue1(){return new Queue("direct.queue1");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1WithRed(Queue directQueue1, DirectExchange directExchange){return BindingBuilder.bind(directQueue1).to(directExchange).with("red");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue1WithBlue(Queue directQueue1, DirectExchange directExchange){return BindingBuilder.bind(directQueue1).to(directExchange).with("blue");}/*** 第2个队列*/@Beanpublic Queue directQueue2(){return new Queue("direct.queue2");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2WithRed(Queue directQueue2, DirectExchange directExchange){return BindingBuilder.bind(directQueue2).to(directExchange).with("red");}/*** 绑定队列和交换机*/@Beanpublic Binding bindingQueue2WithYellow(Queue directQueue2, DirectExchange directExchange){return BindingBuilder.bind(directQueue2).to(directExchange).with("yellow");}
}

3.基于注解声明

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

例如,我们同样声明Direct模式的交换机和队列:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue1"),exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){System.out.println("消费者1接收到direct.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "direct.queue2"),exchange = @Exchange(name = "hmall.direct", type = ExchangeTypes.DIRECT),key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){System.out.println("消费者2接收到direct.queue2的消息:【" + msg + "】");
}

再试试Topic模式:

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue1"),exchange = @Exchange(name = "hmall.topic", type = ExchangeTypes.TOPIC),key = "china.#"
))
public void listenTopicQueue1(String msg){System.out.println("消费者1接收到topic.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue2"),exchange = @Exchange(name = "hmall.topic", type = ExchangeTypes.TOPIC),key = "#.news"
))
public void listenTopicQueue2(String msg){System.out.println("消费者2接收到topic.queue2的消息:【" + msg + "】");
}

4.消息转换器

Spring的消息发送代码接收的消息体是一个Object:
在这里插入图片描述
而在数据传输时,它会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大
  • 有安全漏洞
  • 可读性差
    我们来测试一下。
    1)创建测试队列
    首先,我们在consumer服务中声明一个新的配置类:
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
public class MessageConfig {@Beanpublic Queue objectQueue() {return new Queue("object.queue");}
}

注意,这里我们先不要给这个队列添加消费者,我们要查看消息体的格式。

重启consumer服务以后,该队列就会被自动创建出来了:
在这里插入图片描述
2)发送消息
我们在publisher模块的SpringAmqpTest中新增一个消息发送的代码,发送一个Map对象:

@Test
public void testSendMap() throws InterruptedException {// 准备消息Map<String,Object> msg = new HashMap<>();msg.put("name", "柳岩");msg.put("age", 21);// 发送消息rabbitTemplate.convertAndSend("object.queue", msg);
}

发送消息后查看控制台:
在这里插入图片描述
可以看到消息格式非常不友好。

1.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。
publisherconsumer两个服务中都引入依赖:

<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>

注意,如果项目中引入了spring-boot-starter-web依赖,则无需再次引入Jackson依赖。

配置消息转换器,在publisherconsumer两个服务的启动类中添加一个Bean即可:

@Bean
public MessageConverter messageConverter(){// 1.定义消息转换器Jackson2JsonMessageConverter jackson2JsonMessageConverter = new Jackson2JsonMessageConverter();// 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息jackson2JsonMessageConverter.setCreate	MessageIds(true);return jackson2JsonMessageConverter;
}

消息转换器中添加的messageId可以便于我们将来做幂等性判断。
此时,我们到MQ控制台删除object.queue中的旧的消息。然后再次执行刚才的消息发送的代码,到MQ的控制台查看消息结构:
在这里插入图片描述

2.消费者接收Object
@RabbitListener(queues = "object.queue")
public void listenSimpleQueueMessage(Map<String, Object> msg) throws InterruptedException {System.out.println("消费者接收到object.queue消息:【" + msg + "】");
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/697290.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

四、矩阵的分类

目录 1、相等矩阵 2、同形矩阵 3、方阵&#xff1a; 4、负矩阵、上三角矩阵、下三角矩阵&#xff1a; 5、对角矩阵&#xff1a;是方阵 ​编辑7、单位矩阵&#xff1a;常常用 E或I 来表示。它是一个方阵 8、零矩阵&#xff1a; 9、对称矩阵&#xff1a;方阵 1、相等矩阵 …

openEuler安装MySQL客户端、openEuler安装MySQL-client、openEuler部署MySQL-client

MySQL客户端下载链接&#xff1a;https://downloads.mysql.com/archives/community/ mysql-community-client-5.7.30-1.el7.x86_64.rpm mysql-community-common-5.7.30-1.el7.x86_64.rpm mysql-community-libs-5.7.30-1.el7.x86_64.rpm 3个必选 8.0.22以上的版本是4个&…

HDFS中常用的Shell命令 全面且详细

HDFS中常用的Shell命令目录 一、ls命令 二、mkdir 命令 三、put命令 四、get命令 五、mv命令 六、rm命令 七、cp命令 八、cat命令 前言 安装好hadoop环境之后&#xff0c;可以执行hdfs相关的shell命令对hdfs文件系统进行操作&#xff0c;比如文件的创建、删除、修改文…

【FPGA】VHDL:小型出勤系统设计

附源代码&#xff0c;一定能实现&#xff01; 目录 EDA设计练习题&#xff1a; 实验要求如下&#xff1a; 思路分析&#xff1a; 代码 99进制计数器 码转换 顶层文件 特别注意 测试 编译通过 结果展示 RTL视图 技术映射视图 软件&#xff1a;Quartus II 13.0 (64…

BERT学习笔记

论文&#xff1a;《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》&#xff0c;2019 代码&#xff1a;[tensorflow]&#xff0c;[pytorch] 来源&#xff1a;李沐精度BERT 0、摘要 与之前模型的区别&#xff1a; GPT考虑的是一个单向…

公司中常用的系统有哪些--制造业篇

摘要 本系列博客主要介绍不同行业中使用的常见系统&#xff0c;本文介绍在制造业或是智能制造方向的常见系统。 智能制造发展史 1973年美国约瑟夫哈林顿&#xff08;Joseph Harrington&#xff09;博士在《Computer Integrated Manufacturing》一书中首次提出 CIM&#xff08…

培养纳税筹划思维方式,企业税务筹划实务操作

一、教程描述 本套税务筹划教程&#xff0c;大小447.87M&#xff0c;共有6个文件。 二、教程目录 前言.mp4 培养纳税筹划思维方式.mp4 增值税的税务筹划.mp4 企业所得税的税务筹划.mp4 个人所得税的税务筹划.mp4 企业税务筹划实务操作&#xff08;课件&#xff09;.pdf…

MDST150-16-ASEMI三相可控整流模块MDST150-16

编辑&#xff1a;ll MDST150-16-ASEMI三相可控整流模块MDST150-16 型号&#xff1a;MDST150-16 品牌&#xff1a;ASEMI 正向电流&#xff08;Id&#xff09;&#xff1a;150A 反向耐压&#xff08;VRRM&#xff09;&#xff1a;1600V 正向浪涌电流&#xff1a;1200A 正…

大数据揭秘:Hadoop短视频流量分析实战

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

基于springboot+vue的车辆管理系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

C语言翻译环境:预编译+编译+汇编+链接详解

目录 翻译环境和运行环境 翻译环境 预处理&#xff08;预编译&#xff09; 编译 词法分析 语法分析 语义分析 汇编 链接 运行环境 ⭐翻译环境和运行环境 在ANSI C的任何⼀种实现中&#xff0c;存在两个不同的环境。 第1种是翻译环境&#xff0c;在这个环境中源代码被…

H桥逆变方式介绍(单极性)

H桥逆变电路实现的就是一个从DC——AC的过程 这个电路有两个时序&#xff0c;Q6Q4是一个导通时序&#xff0c;Q5Q7是一个导通时序 左边两个是高频20KHZ的、互补的sPWM波&#xff0c;右边是低频的50HZ的PWM波 三角波一般叫载波&#xff0c;正弦波叫调制波&#xff08;单片机内…

Vi/Vim 使用小窍门,如何消除搜索后的关键字高亮

Vim/Vi 基本上是 *nix 世界最受欢迎的编辑器了&#xff0c;不知道为什么&#xff0c;一直以来觉得和 Emacs 比起来&#xff0c;Vim 更加有亲和力。用起来很舒服。 今天就记录一个困扰了我很久的问题。 大家应该都知道&#xff0c;在 Vi 里面如果要搜索某个关键字&#xff0c;…

Python-pdfplumber读取PDF内容

文章目录 前言一、pdfplumber模块1.1 pdfplumber的特点1.2 pdfplumber.PDF类1.3pdfplumber.Page类 二 pdfplumber的使用2.1 加载PDF2.2 pdfplumber.PDF 类2.3 pdfplumber.Page 类2.4 读取PDF2.5 读取PDF文档信息2.6 查看总页数2.7 查看总页数读取第一页的宽度&#xff0c;页高等…

VsCode编译wxWidgets的HelloWorld

wxWidgets 环境搭建 在wxWidgets 官网下载页面点击Download Windows Binaries选择TDM-GCC 10.3和MinGW-w64 8.1下的头文件和开发包进行下载。这儿我们会用两种 gcc 编译器进行对比&#xff0c;所以下载 2 个种编译器对应的库文件。正常只需根据自己安装的编译器下载对应的 1 种…

[每周一更]-(第88期):Nginx 之 proxy_pass使用详解

proxy_pass 指令用于指定后端服务器的地址&#xff0c;可以采用以下不同的格式&#xff1a; 直接指定地址和端口&#xff1a; location / {proxy_pass http://backend_server:8080; }这将请求代理到 http://backend_server:8080。 使用变量&#xff1a; location / {set $ba…

petalinux_zynq7 驱动DAC以及ADC模块之五:nodejs+vue3实现web网页波形显示

前文&#xff1a; petalinux_zynq7 C语言驱动DAC以及ADC模块之一&#xff1a;建立IPhttps://blog.csdn.net/qq_27158179/article/details/136234296petalinux_zynq7 C语言驱动DAC以及ADC模块之二&#xff1a;petalinuxhttps://blog.csdn.net/qq_27158179/article/details/1362…

flutter开发实战-手势Gesture与ListView滚动竞技场的可滑动关闭组件

flutter开发实战-手势Gesture与ListView滚动竞技场的可滑动关闭组件 最近看到了一个插件&#xff0c;实现一个可滑动关闭组件。滑动关闭组件即手指向下滑动&#xff0c;组件随手指移动&#xff0c;当移动一定位置时候&#xff0c;手指抬起后组件滑出屏幕。 一、GestureDetect…

大保司保费贵,是否物有所值?

《大保司保费贵&#xff0c;是否物有所值》 这是罗师兄的原创文章 预计8-9分钟读完 作者&#xff1a;罗师兄 微信号&#xff1a;luoyun515 当我们想要买一份重疾险、储蓄险等长期险时&#xff0c; 我们会发现&#xff0c;同样的保障责任和保额&#xff0c; 不同保险公司的…

基于AdaBoost算法的情感分析研究-微博情感分析-文本分类

基于AdaBoost算法的情感分析研究 摘 要 随着互联网的快速发展&#xff0c;各类社交媒体平台如微信、QQ等也与日俱增&#xff0c;而微博更是集成了传统网站、论坛、博客等的优点&#xff0c;并加上了人与人之间的互动性、关系亲密程度等多种智能算法&#xff0c;并以简练的形式…