1.deeplabv3+网络结构及原理

         这里的网络结构及原理可以看这篇博客,DeepLabV3+: 在DeepLabV3基础上引入了Decoder_matlab deeplabv3+resnet101-CSDN博客该博客翻译原论文解释得很清楚。

一、引言

       语义分割的目标是为图像中的每个像素分配语义标签。在这项研究中,考虑了两种类型的神经网络:使用了空间金字塔池化的模块、编解码器结构;前者可以通过在不同分辨率下汇集特性来获取丰富的上下文信息,后者能够获得清晰的物体边界。

       为了在不同尺度下获得上下文信息,DeepLabv3使用了几个并行的不同速率的空洞卷积(空洞空间金字塔池化,ASPP);而PSPNet则是在不同网格尺度上执行池化操作。尽管在最后一个feature map上编码了丰富的语义信息,但由于在网络backbone中使用了带有步长的池化或者卷积操作,与物体边界相关的细节信息却丢失了。这个问题,可以通过使用空洞卷积提取密集的feature maps来改善。

         DeepLabv3+,通过增加一个简单有效的解码器模块扩展了DeepLabv3,以恢复物体边界。在DeepLabv3的输出中,已经编码了丰富的语义信息,其使用空洞卷积来控制编码特征的密度,这取决于计算资源。此外,解码器模块可以恢复详细的物体边界。本质上deeplabv3+就是deeplabv3加上一个decoder.

        总体来讲,贡献如下:

  1. 在DeepLabv3基础上,加了一个解码器;
  2. 可以通过控制空洞卷积速率来任意改变编码器输出的feature map分辨率;
  3. 使用Xception作为backbone(也可使用ResNet101等),并在ASPP和解码器模块中使用了深度可分离卷积,从而产生了一个更快、更强的编解码网络;
  4. 该模型达到了新的SOTA;
  5. 开源了代码;

二、网络结构

       DeepLabV3+的网络结构如下图所示,主要为Encoder-Decoder结构。

        Encoder-decoder: 编解码结构已经被用于多种计算机视觉任务,如人体姿态估计、目标检测、语义分割。通常,编码器-解码器网络包含(1)一个编码器模块(Encoder),逐步减少特征映射并捕获更高的语义信息,(2)一个解码器模块(Decoder),逐步恢复空间信息。在此基础上,我们提出了使用DeepLabv3作为编码器模块,并添加一个简单而有效的解码器模块,以获得更清晰的分割。

1.Encoder

       在encoder部分,主要包括了backbone(DCNN)、ASPP两大部分。encoder中连接的第一个模块是DCNN, 他代表的是用于提取图片特征的主干网络,DCNN右边是一个ASPP网络,他用一个1*1的卷积、3个3*3的 空洞卷积和一个全局池化来对主干网络的输出进行处理。然后再将其结果都连接起来并用一个1*1的卷积 来缩减通道数。具体如下:

  • 其中backbone有两种网络结构:将layer4改为空洞卷积的Resnet系列、改进的Xception。从backbone出来的feature map分两部分:一部分是最后一层卷积输出的feature maps,另一部分是中间的低级特征的feature maps;backbone输出的第一部分送入ASPP模块,第二部分则送入Decoder模块。
  • ASPP模块接受backbone的第一部分输出作为输入,使用了四种不同膨胀率的空洞卷积块(包括卷积、BN、激活层)和一个全局平均池化块(包括池化、卷积、BN、激活层)得到一共五组feature maps,将其concat起来之后,经过一个1*1卷积块(包括卷积、BN、激活、dropout层),最后送入Decoder模块。

       可分离空洞卷积的优点:

  • 减小计算量,是普通卷积计算量的1/9;
  • 扩大感受野:神经网络加深,单个像素感受野扩大,但特征图尺寸缩小,空间分辨率降低,为此,空洞卷积出现了,一方面感受野大了可以检测分割大目标,另一方面分辨率高了可以精确定位目标。
  • 捕获多尺度上下文信息:两列之间填充 (r-1) 个0,这个 r 可自己设置,不同 r 可得到不同尺度信息。
2.Decoder

      在Decoder部分,接收来自backbone中间层的低级feature maps和来自ASPP模块的输出作为输入。

  • 首先,对低级feature maps使用1*1卷积进行通道降维,从256降到48(之所以需要降采样到48,是因为太多的通道会掩盖ASPP输出的feature maps的重要性,且实验验证48最佳);
  • 然后,对来自ASPP的feature maps进行插值上采样,得到与低级featuremaps尺寸相同的feature maps;
  • 接着,将通道降维的低级feature maps和线性插值上采样得到的feature maps使用concat拼接起来,并送入一组3*3卷积块进行处理;
  • 最后,再次进行线性插值上采样,得到与原图分辨率大小一样的预测图。
3.Xception

Xception网络结构如下:

        Xception网络是由inception结构加上depthwise separable convlution,再加上残差网络结构改进而来。Xception结构由36层卷积层组成网络的特征提取基础,分为Entry flow,Middle flow,Exit flow;被分成了14个模块,除了第一个和最后一个外,其余模块间均有线性残差连接。

        Xception结构演变:(轻量化网络结构——Xception_xception网络结构-CSDN博客

        Xception 并不是真正意义上的轻量化模型,是Google继Inception后提出的对Inception v3的另一种改进,主要是采用depthwise separable convolution来替代原来的Inception v3中的卷积操作,这种性能的提升是来自于更有效的使用模型参数而不是提高容量。

        既然是在Inception v3上进行改进的,那么Xception是如何一步一步的从Inception v3演变而来。Inception v3结构如下图1(这个网络结构是最基础的google提出的inceptuon网络结构的改进,大家可以查找资料进一步了解)

注:1x1卷积的作用: 1)降维:较少计算量 2)升维:小型网络,通道越多,效果会更好 3)1x1是有一个参数学习的卷积层,可以增加跨通道的相关性。

下图简化了上图的inception module(就只考虑1x1的那条支路,不包含Avg pool)如下:

       下图把上图的第一部分的3个1x1卷积核统一起来,变成1个1x1的卷积核,然后连接3个3x3的卷积,这3个卷积操作只将前面1x1卷积结果中的一部分作为自己的输入(只负责一部分通道)。

       下图An“extreme” version of Inception module,先用1x1卷积核对各通道之间(cross-channel)进行卷积,之后使用3x3的卷积对每个输出通道进行卷积操作,也就是3x3卷积的个数和1x1卷积的输出channel个数相同。

        在Xception中主要采用depthwise separable convolution,和原版的相比有两个不同之处:
(1)原版的Depthwise convolution,先是逐通道卷积,再1x1卷积;而Xception是反过来,先1x1卷积,再逐通道卷积。
(2)原版Depthwise convolution的两个卷积之间是不带激活函数的,而Xception再经过1x1卷积之后会带上一个Relu的非线性激活函数。

三、结论

        我们提出的模型“DeepLabv3+”采用了编码器-解码器结构,其中使用DeepLabv3对丰富的上下文信息进行编码,采用简单有效的解码器模块恢复对象边界。也可以根据可用的计算资源,应用空洞卷积以任意分辨率提取编码器特征。还对Xception模型和空洞可分离卷积进行了研究,使所提出的模型更快、更强。最后,我们的实验结果表明,所提出的模型在PASCAL VOC 2012和Cityscapes数据集达到SOTA。

        一句话总结DeepLabV3+:

        DeepLabv3作为Encoder提取特征,上采样后与backbone中间的低级特征以concat的方式融合,然后利用3*3卷积获得细化的特征,最后再进行上采样恢复到原始分辨率;在backbone部分,使用可分离卷积改进了Xception。

       本质上,DeepLabV3+就是DeepLabV3加上一个decoder。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/697200.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Vue计算属性computed()

1. 计算属性定义 获取计算属性值 <div>{{ 计算属性名称}}</div>创建计算属性 let 定义的属性ref/reactive....let 计算属性名称 computed(() > {//这里写函数式,函数式里面包含定义属性//只有这个包含的定义属性被修改时才出发此函数式//通过计算属性名称co…

docker:Haoop集群

系列文章目录 docker&#xff1a;环境安装 docker:Web迁移 docker:Haoop集群 文章目录 系列文章目录前言一、宿主机选择二、环境准备1.前置技术2.网络环境1. docker网卡2. 分配IP 三、容器互联三、Jdk和Hadoop安装四、分发脚本五、启动Hadoop总结 前言 年前学习了docker的相关…

ubuntu18 环境安装

1. ubuntu18 环境安装 1. ubuntu18 环境安装 1.1. default language1.2. sougou shurufa1.3. cmake-last1.4. audio-recorder1.5. sources.list切换清华源1.6. oh my zsh1.7. weixin1.8. bcompare1.9. wireshark1.10. 其他问题 1.1. default language ubuntu 修改系统默认语…

https://registry.npm.taobao.org淘宝npm镜像仓库地址更新

在工作中有遇见获取淘宝的npm镜像存在问题&#xff0c;图示如下的报错&#xff1a; 根据报错的内容是说 https://registry.npm.taobao.org地址访问失败了&#xff0c;然后通过排查发现淘宝的npm镜像仓库地址有更新了。需要使用最新的地址 旧的淘宝镜像仓库&#xff1a;https://…

数据结构2月19日

题目&#xff1a;顺序表作业 代码&#xff1a; 功能区&#xff1a; #include <stdio.h>#include <stdlib.h>#include "./d2191.h"SeqList* create_seqList(){SeqList* list (SeqList*)malloc(sizeof(SeqList));if(NULL list){return NULL;}list->p…

Linux系列讲解 —— 【Vim编辑器】在Ubuntu18.04中安装新版Vim

平时用的电脑系统是Ubuntu18.04&#xff0c;使用apt安装VIM的默认版本是8.0。如果想要安装新版的Vim编辑器&#xff0c;只能下载Vim源码后进行编译安装。 目录 1. 下载Vim源码2. 编译3. 安装4. 遇到的问题4.1 打开vim后&#xff0c;文本开头有乱码现象。4.2 在Vim编辑器中&…

JS常见问题

文章目录 如何判断是数组 如何判断是数组 Array.isArray console.log(Array.isArray(arr))instanceof&#xff08;instanceof 运算符用于验证构造函数的 prototype 属性是否出现在对象的原型链中的任意位置&#xff09; console.log(arr1 instanceof Array)constructor&#x…

百面嵌入式专栏(经验篇)如何在面试中介绍自己的项目经验

文章目录 1. 在面试前准备项目描述,别害怕,因为面试官什么都不知道2. 准备项目的各种细节,一旦被问倒了,就说明你没做过3.不露痕迹地说出面试官爱听的话4.一定要主动,面试官没有义务挖掘你的亮点5.一旦有低级错误,可能会直接出局6.引导篇:准备些加分点,在介绍时有意提到…

测试环境搭建整套大数据系统(三:搭建集群zookeeper,hdfs,mapreduce,yarn,hive)

一&#xff1a;搭建zk https://blog.csdn.net/weixin_43446246/article/details/123327143 二&#xff1a;搭建hadoop&#xff0c;yarn&#xff0c;mapreduce。 1. 安装hadoop。 sudo tar -zxvf hadoop-3.2.4.tar.gz -C /opt2. 修改java配置路径。 cd /opt/hadoop-3.2.4/etc…

R语言【raster】——projectRaster():映射一个Raster对象

Package raster version 3.6-27 Description 用另一个投影(坐标参考系统&#xff0c;(CRS))将一个Raster*对象的值投影到一个新的Raster*对象。 您可以通过将新投影作为单个参数提供来实现这一点&#xff0c;在这种情况下&#xff0c;函数将设置新对象的范围和分辨率。为了对…

Three.js初学(3)

Three.js初学&#xff08;3&#xff09; 动画渲染循环1. 请求动画帧2. 旋转动画 Canvas画布布局和全屏常见几何体渲染器设置GUI.js库1. 库的引入2. 如何使用初步调试进阶调试界面分组 动画渲染循环 1. 请求动画帧 requestAnimationFrame实现周期性循环执行 requestAnimationF…

LeetCode | 整数反转 C语言

Problem: 7. 整数反转 文章目录 思路解题方法Code结果 思路 运算部分 while(x > 0) {y x % 10;y * 10;x / 10; } y / 10;对于大于32位的数要用long int类型的变量保存用pow算-2的31次方和2的31次方-1。 解题方法 由思路得 Code int reverse(long int x){long int y …

web前端安全性——iframe安全问题

1、概念 iframe安全问题可称作界面劫持&#xff0c;像点击劫持、拖放劫持、触屏劫持。就是我们的点击&#xff0c;拖放&#xff0c;触屏操作被劫持了&#xff0c;而去操作了其它的透明隐藏的界面。 **原理是利用透明层iframe,使用了CSS中的opacity或z-index等属性&#xff0c;…

快速构建 Debezium MySQL Example 数据库

博主历时三年精心创作的《大数据平台架构与原型实现&#xff1a;数据中台建设实战》一书现已由知名IT图书品牌电子工业出版社博文视点出版发行&#xff0c;点击《重磅推荐&#xff1a;建大数据平台太难了&#xff01;给我发个工程原型吧&#xff01;》了解图书详情&#xff0c;…

突破编程_C++_面试(指针(1))

面试题 1 &#xff1a;什么是空指针&#xff1f; 在 C 中&#xff0c;空指针是一个特殊的指针值&#xff0c;它不指向任何有效的内存地址。空指针通常用于表示指针不指向任何对象或函数。在C11及以后的版本中&#xff0c; nullptr 是表示空指针的推荐方式。 nullptr 是一个指针…

AI绘画与修图:重塑数字艺术的新纪元

文章目录 一、AI绘画与修图的原理二、AI绘画的应用三、AI修图的优势四、面临的挑战五、未来发展趋势《AI绘画与修图实战&#xff1a;PhotoshopFirefly从入门到精通 轻松玩转AI绘画与修图实战》亮点内容简介作者简介 随着人工智能技术的飞速发展&#xff0c;AI绘画与修图已经成为…

如何理解和区分训练集、测试集和验证集

如何理解和区分训练集、测试集和验证集 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】 &#x1f4a1; 创作高质量博文&#xff0c;分享更多关于深度学习、PyTor…

靡语IT:Vue精讲(一)

Vue简介 发端于2013年的个人项目&#xff0c;已然成为全世界三大前端框架之一&#xff0c;在中国大陆更是前端首选。 它的设计思想、编码技巧也被众多的框架借鉴、模仿。 纪略 2013年&#xff0c;在Google工作的尤雨溪&#xff0c;受到Angular的启发&#xff0c;从中提取自…

soc(十七) SOC市场分类

桌面服务器集中式服务器架构和基于ARM微服务器架构的存储差别在哪&#xff1f; http://www.dostor.com/p/54167.html 手机飞行器汽车家庭监控安防路由器

【前端素材】推荐优质后台管理系统Protable平台模板(附源码)

一、需求分析 后台管理系统是一种用于管理和监控网站、应用程序或系统的在线工具。它通常是通过网页界面进行访问和操作&#xff0c;用于管理网站内容、用户权限、数据分析等。当我们从多个层次来详细分析后台管理系统时&#xff0c;可以将其功能和定义进一步细分&#xff0c;…