大数据计算技术秘史(上篇)

在之前的文章《2024 年,一个大数据从业者决定……》《存储技术背后的那些事儿》中,我们粗略地回顾了大数据领域的存储技术。在解决了「数据怎么存」之后,下一步就是解决「数据怎么用」的问题。

其实在大数据技术兴起之前,对于用户来讲并没有存储和计算的区分,都是用一套数据库或数据仓库的产品来解决问题。而在数据量爆炸性增长后,情况就变得不一样了。单机系统无法存储如此之多的数据,先是过渡到了分库分表这类伪分布式技术,又到了 Hadoop 时代基于分布式文件系统的方案,后来又到了数据库基于一致性协议的分布式架构,最终演进为现在的存算分离的架构。

最近十几年,Data Infra 领域的计算技术以及相关公司层出不穷,最终要解决的根本问题其实只有一个:如何让用户在既灵活又高效,架构既简单又兼具高扩展性,接口既兼容老用户习惯、又能满足新用户场景的前提下使用海量数据。

解读一下,需求如下:

数据量大、数据种类多、数据逻辑复杂

支持 SQL 接口,让习惯了 SQL 接口的 BI 老用户们实现无缝迁移,同时要想办法支持 AI 场景的接口——Python

交互式查询延迟要低,能支持复杂的数据清洗任务,数据接入要实时

架构尽量简单,不要有太多的运维成本,同时还能支持纵向、横向的水平扩展,有足够的弹性

据太可研究所(techinstitute)所知,目前市面上没有哪款产品能同时满足以上所有要求,如果有,那一定是骗人的。所以在计算领域诞生了众多计算引擎、数据库、计算平台、流处理、ETL 等产品,甚至还有一个品类专门做数据集成,把数据在各个产品之间来回同步,对外再提供统一的接口。

不过,如果在计算领域只能选一个产品作为代表,那毫无疑问一定是 Spark。从 09 年诞生起到现在,Spark 已经发布至 3.5.0 版本,社区依旧有很强的生命力,可以说穿越了一个技术迭代周期。它背后的商业公司 Databricks 已经融到了 I 轮,估值 430 亿💲,我们不妨沿着 Spark 的发展历史梳理一下计算引擎技术的变革。

Vol.1

大数据计算的场景主要分两类,一是离线数据处理,二是交互式数据查询。离线数据处理的的特点产生的数据量大、任务时间长(任务时长在分钟级甚至是小时级),主要对应数据清洗任务;交互式查询的特点是任务时间短、并发大、输出结果小,主要对应 BI 分析场景。

时间拨回 2010 年之前,彼时 Spark 还没开源,当时计算引擎几乎只有 Hadoop 配套的 MapReduce 可以用,早年间手写 MapReduce 任务是一件门槛很高的事情。MapReduce 提供的接口非常简单,只有 mapper、reducer、partitioner、combiner 等寥寥几个,任务之间传输数据只有序列化存到 hdfs 这一条路,而真实世界的任务不可能只有 Word Count 这种 demo。所以要写好 MapReduce 肯定要深入理解其中的原理,要处理数据倾斜、复杂的参数配置、任务编排、中间结果落盘等。现在 MapReduce 已经属于半入土的技术了,但它还为业界留下了大量的徒子徒孙,例如各个云厂商的 EMR 产品,就是一种传承。

Spark 开源之后为业界带来了新的方案,RDD 的抽象可以让用户像正常编写代码一样写分布式任务,还支持 Python、Java、Scala 三种接口,大大降低了用户编写任务的门槛。总结下来,Spark 能短时间内获得用户的青睐有以下几点:

更好的设计,包括基于宽窄依赖的 dag 设计,能大大简化 job 编排

性能更高,计算在内存而非全程依赖 hdfs,这是Spark 早期最大的卖点,直到 Spark2.x 的官网上还一直放着一张和 mapreduce 的性能对比,直到这几年没人关心 mapreduce 之后才撤掉

更优雅的接口,RDD 的抽象以及配套的 API 更符合人类的直觉

API 丰富,除了 RDD 和配套的算子,还支持了Python 接口,这直接让受众提升了一个数量级

但早期的 Spark 也有很多问题,例如内存管理不当导致程序 OOM、数据倾斜问题、继承了 Hadoop 那套复杂的配置。Spark 诞生之初非常积极地融入 Hadoop 体系,例如,代码里依赖了大量 Hadoop 的包,文件系统和文件访问接口沿用了 Hadoop 的设计,资源管理一开始只有 Hadoop 的 Yarn。直到现在这些代码依旧大量使用,未来也不可能再做修改,所以说尽管 Hadoop 可能不复存在,但 Hadoop 的代码会一直保留下去,在很多计算引擎里面发挥着不可替代的作用。

Vol.2

无论是非常难用的 MapReduce 接口,还是相对没那么难用的 Spark RDD 接口,受众只是研发人员,接口是代码。

无论是做数据清洗的数据工程师,还是使用 BI 的数据分析师,最熟悉的接口还是 SQL。

因此,市面上便诞生了大量 SQL on Hadoop 的产品,很多产品直到现在也还很有生命力。

最早出现的是 Hive,Hive 的影响力在大数据生态里太大,大到很多人都以为它是 Hadoop 原生自带的产品,不知道它是 Facebook 开源的。Hive 主要的能力只有一个就是把 SQL 翻译成 MapReduce 任务,这件事说来简单,好像也就是本科生大作业的水平,但想把它做好却是件非常有挑战性的工作,早期也只有 Hive 做到了,而且成为了事实上的标准。

要把 SQL 翻译成 MapReduce 任务,需要有几个必备组件,一是 SQL 相关的 Parser、Planner、Optimizer、Executor,基本上是一个 SQL 数据库的标配,二是 metadata,需要存储数据库、表、分区等信息,以及表和 HDFS数据之间的关系。

alt 图源|https://www.interviewbit.com/blog/hive-architecture/

Hive 的这套思路影响了后来众多的计算引擎,例如 Spark SQL、Presto 等默认都会支持 Hive Metastore。Hive 的架构最大的瓶颈就在 MapReduce 上,无法做到低延迟的查询,也就无法解决用户低延迟、交互式分析的需求。有个很直观的例子,每次用户提交一个 Hive 查询,可以去喝一杯咖啡再回来看结果。此外,哪怕是离线数据清洗的任务使用 Hive 也相对较慢。

Spark 在 2012 年发布的 0.8 版本中开发了 Spark SQL 模块,类似 Hive 的思路,把 SQL 编译成 RDD 任务,同时期的 Presto 也进入了 Apache 孵化器,目标也是解决大数据场景下交互式分析的场景。Spark 和 Presto 支持 SQL 的时间相仿,但后来走上了相当不同的道路,Presto 的定位更接近一个 OLAP 数据库,重心在交互式查询场景,而 Spark 则将注意力放在数据处理任务上,是一个开发分布式任务的框架,自始至终都不是一个完整的数据库,市面上基于 Spark 开发的数据库产品,倒是有不少。

通过 SQL 交互在 10 年代早期,逐渐变成了主流使用大数据产品的主流范式,包括离线任务、交互式查询的接口都逐渐统一到了SQL。随着数据量进一步增长,查询性能一直解决得不好,哪怕是 Spark SQL、Presto,也只能把延迟降低到分钟级别,还是远远无法满足业务的需求。

这种情况直到 2015 年 Kylin 开源才得以解决,基于Cube、预计算技术第一次将大数据领域的交互式查询延迟降低到了秒级,做到了和传统数仓达类似的查询体验。但 kylin 的做法代价也很大,用户需要自定义各种模型、Cube、维度、指标等等概念非常复杂,还要学会设计 rowkey 否则性能也不会很好。Kylin 的出现让业界看到了秒级延迟的可能性,至此内业一些同学甚至觉得大数据场景下 Hadoop + Hive + Spark + Kylin + HBase 可能就是最优解了,顶多还需要加上 Kafka + Flink 去解决实时数据的问题。

但是,2018 年 Clickhouse 横空出世,通过 SIMD、列存、索引优化、数据预热等一系列的暴力优化,竟然也可把查询延迟降低到秒级,而且架构极其简单,只要 Zookeeper + Clickhouse,就能解决上面一堆产品叠加才可解决的问题。这一下子戳中了 Hadoop 体系的痛点——Hadoop 体系产品太多、架构太复杂、运维困难。

自 ClickHouse 后,数据库产品们便开始疯狂吸收其优秀经验,大数据和数据库两个方向逐渐融合,业界重新开始思考「大数据技术真的需要单独的一个体系吗?」「Hadoop 的方向是对的吗?」「数据库能不能解决海量数据的场景?」这个话题有点宏大,可以放在以后讨论。

Vol.3

说回计算引擎,早期的引擎无论是 Hive 也好,Spark 的 RDD 接口也罢,都不适合实时的数据写入。而在大数据技术演进的这些年里,用户的场景也越来越复杂。早期的离线计算引擎只能提供离线数据导入,这就使得用户只能做 T+1 或近似 T+0 的分析。但很多场景需要的是实时分析,到现在,实时分析已经成为了新引擎的标配。

Spark 在 0.9 本版里提供了一套 Spark streaming 接口尝试解决实时的问题,但扒开 Spark streaming 的代码,不难发现它实际上是一段时间触发一个微批任务,对于延迟没那么敏感的用户其实已经够用了。当然也有想要近乎没有延迟的用户,例如金融交易监控、广告营销场景、物联网的场景等。

实时流数据的难度要远高于批处理,首先,如何做到低延迟就是个难点。其次,流数据本身质量远低于批数据,具体体现在流数据会有乱序、数据丢失、数据重复的问题。此外,要做流处理还需要确保任务能长期稳定地运行,这与批处理任务跑完就结束对稳定性的要求很不一样。最后,还有很复杂的数据状态管理,包括 checkpoint 管理、增量更新、状态数据一致性、持久化的问题。

Apache Flink 对这些问题解决的远比 Spark streaming 要好,所以在很长时间内 Flink 就是流计算的代名词。Spark 直到 2.0 发布了 structured streaming 模块之后,才有了和 Flink 同台竞技的资格。Flink 虽然在流计算场景里是无可争议的领导者,但在流计算的场景和市场空间远小于离线计算、交互式分析的市场。可以这样认为,其在数据分析领域锦上添花的功能而非必备能力,Flink 背后的团队和 Databricks 差距也很大,曾创业两次,又先后卖给阿里和 Confluent,这可能也是 Flink 的影响力远小于 Spark 的原因。

好了,本次的大数据计算技术漫谈(上)就先谈到这里,下周同一时间,咱们继续!

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/696169.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java面试JVM虚拟机篇

1 JVM组成 1.1 JVM由那些部分组成,运行流程是什么? 难易程度:☆☆☆ 出现频率:☆☆☆☆ JVM是什么 Java Virtual Machine Java程序的运行环境(java二进制字节码的运行环境) 好处: 一次编写&a…

Excel之index、MATCH面试题、VLOOKUP函数,

VLOOKUP() 在表格的首列查找指定的数值,并返回表格当前行中指定列处的数值。 结构:VLOOKUP(查找值,查找区域,列序数,匹配条件) 解释:VLOOKUP(找谁,在哪里找,第几列,0或1) 1.目的:根据【产品】查找【销量】 公式:V…

pikachu靶场-XSS

XSS: XSS(跨站脚本)概述 Cross-Site Scripting 简称为“CSS”,为避免与前端叠成样式表的缩写"CSS"冲突,故又称XSS。一般XSS可以分为如下几种常见类型: 1.反射性XSS; 2.存储型XSS; 3.DOM型XSS; …

QT的UI入门

二、UI入门 QWidget类(熟悉) QWidget类是所有组件和窗口的基类,内部包含了一些基础的界面特性。 常用属性: 修改坐标 x : const int 横坐标,每个图形的左上角为定位点,横轴的零点在屏幕的最左边&#xff0c…

171基于matlab的随机共振微弱信号检测

基于matlab的随机共振微弱信号检测,随机共振描述了过阻尼布朗粒子受周期性信号和随机噪声的共同作用下,在非线性双稳态系统中所发生的跃迁现象. 随机共振可用于弱信号的检测。程序已调通,可直接运行。

HashMap 源码学习-jdk1.8

1、一些常量的定义 这里针对MIN_TREEIFY_CAPACITY 这个值进行解释一下。 java8里面,HashMap 的数据结构是数组 (链表或者红黑树),每个数组节点下可能会存在链表和红黑树之间的转换,当同一个索引下面的节点超过8个时…

【Webpack】处理字体图标和音视频资源

处理字体图标资源 1. 下载字体图标文件 打开阿里巴巴矢量图标库open in new window选择想要的图标添加到购物车,统一下载到本地 2. 添加字体图标资源 src/fonts/iconfont.ttf src/fonts/iconfont.woff src/fonts/iconfont.woff2 src/css/iconfont.css 注意字体…

[计算机网络]---TCP协议

前言 作者:小蜗牛向前冲 名言:我可以接受失败,但我不能接受放弃 如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一 、TCP协…

Java并发基础:原子类之AtomicBoolean全面解析

本文概要 AtomicBoolean类优点在于能够确保布尔值在多线程环境下的原子性操作,避免了繁琐的同步措施,它提供了高效的非阻塞算法实现,可以大大提成程序的并发性能,AtomicBoolean的API设计非常简单易用。 AtomicBoolean核心概念 …

Facebook Horizon:探索虚拟现实中的社交空间

随着科技的不断进步,虚拟现实(VR)技术正成为社交互动和娱乐体验的新前沿。在这个数字时代,Facebook作为全球最大的社交媒体平台之一,正在引领虚拟社交的新时代,其推出的虚拟社交平台Facebook Horizon成为了…

深入理解C语言(5):程序环境和预处理详解

文章主题:程序环境和预处理详解🌏所属专栏:深入理解C语言📔作者简介:更新有关深入理解C语言知识的博主一枚,记录分享自己对C语言的深入解读。😆个人主页:[₽]的个人主页&#x1f3c4…

Imagewheel私人图床搭建结合内网穿透实现无公网IP远程访问教程

文章目录 1.前言2. Imagewheel网站搭建2.1. Imagewheel下载和安装2.2. Imagewheel网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar临时数据隧道3.2.Cpolar稳定隧道(云端设置)3.3.Cpolar稳定隧道(本地设置) 4.公网访问测…

flutter 文件上传组件和大文件分片上传

文件分片上传 资料 https://www.cnblogs.com/caijinglong/p/11558389.html 使用分段上传来上传和复制对象 - Amazon Simple Storage Service 因为公司使用的是亚马逊的s3桶 下面是查阅资料获得的 亚马逊s3桶的文件上传分片 分段上分为三个步骤:开始上传、上传对…

CSP-J 2023 T3 一元二次方程

文章目录 题目题目背景题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 题目传送门题解思路总代码 提交结果尾声 题目 题目背景 众所周知,对一元二次方程 a x 2 b x c 0 , ( a ≠ 0 ) ax ^ 2 bx c 0, (a \neq 0) ax2bxc0,(a0),可…

STM32G030C8T6:定时器1ms中断(以64MHz外部晶振为例)

本专栏记录STM32开发各个功能的详细过程,方便自己后续查看,当然也供正在入门STM32单片机的兄弟们参考; 本小节的目标是,系统主频64 MHZ,采用高速外部晶振,通过定时器3 每秒中断控制 PB9 引脚输出高低电平,从…

低代码开发:推动互联网企业数字化转型的关键因素

联网行业作为我国数字经济发展的核心驱动力,在推动国家数字化转型中扮演着至关重要的角色。与其他传统行业相比,互联网企业面临更加紧迫的数字化转型需求,因为它们需要不断适应快速变化的市场环境和技术趋势。 然而,由于互联网企业…

MFC 皮肤库配置

1.创建MFC 对话框 2.添加皮肤资源 添加资源 添加头文件 关闭SDL检测 添加静态库文件 修改字符集 添加头文件 将皮肤中的ssk文件加载到初始化实例中 > 运行即可

【寸铁的刷题笔记】树、dfs、bfs、回溯、递归(一)

【寸铁的刷题笔记】树、dfs、bfs、回溯、递归(一) 大家好 我是寸铁👊 总结了一篇刷题关于树、dfs、bfs、回溯、递归的文章✨ 喜欢的小伙伴可以点点关注 💝 105. 从前序与中序遍历序列构造二叉树 模拟分析图 代码实现 /*** Definition for a binary tre…

HarmonyOS—添加/删除Module

Module是应用/服务的基本功能单元,包含了源代码、资源文件、第三方库及应用/服务配置文件,每一个Module都可以独立进行编译和运行。一个HarmonyOS应用/服务通常会包含一个或多个Module,因此,可以在工程中创建多个Module&#xff0…

如何利用内网穿透工具在企业微信开发者中心实现本地接口服务回调

文章目录 1. Windows安装Cpolar2. 创建Cpolar域名3. 创建企业微信应用4. 定义回调本地接口5. 回调和可信域名接口校验6. 设置固定Cpolar域名7. 使用固定域名校验 企业微信开发者在应用的开发测试阶段,应用服务通常是部署在开发环境,在有数据回调的开发场…