ELK Stack 日志平台搭建

前言

最近在折腾 ELK 日志平台,它是 Elastic 公司推出的一整套日志收集、分析和展示的解决方案。

专门实操了一波,这玩意看起来简单,但是里面的流程步骤还是很多的,而且遇到了很多坑。在此记录和总结下。

本文亮点:一步一图、带有实操案例、踩坑记录、与开发环境的日志结合,反映真实的日志场景。

日志收集平台有多种组合方式:

  • ELK Stack 方式:Elasticsearch + Logstash + Filebeat + Kibana,业界最常见的架构。
  • Elasticsearch + Logstash + Kafka + Kibana,用上了消息中间件,但里面也有很多坑,放到下一讲。

这次先讲解 ELK Stack 的方式,这种方式对我们的代码无侵入,核心思想就是收集磁盘的日志文件,然后导入到 Elasticsearch。

比如我们的应用系统通过 logback 把日志写入到磁盘文件,然后通过这一套组合的中间件就能把日志采集起来供我们查询使用了。

整体的架构图如下所示:

流程如下:

  • 先使用 Filebeat 把日志收集起来,然后把数据再传给 Logstash。
  • 通过 Logstash 强大的数据清洗功能。
  • 最终把数据写入到 Elasticsearch 中。
  • 并由 Kibana 进行可视化。

温馨提示:以下案例都在一台 ubuntu 虚拟机上完成,内存分配了 6G。

一、部署 Elasticsearch

数据库获取 elasticsearch 镜像:

docker pull elasticsearch:7.7.1

创建挂载目录:

mkdir -p /data/elk/es/{config,data,logs}

赋予权限:

chown -R 1000:1000 /data/elk/es

创建配置文件:

cd /data/elk/es/config
touch elasticsearch.yml
-----------------------配置内容----------------------------------
cluster.name: "my-es"
network.host: 0.0.0.0
http.port: 9200

启动 elasticsearch 容器:

docker run -it  -d -p 9200:9200 -p 9300:9300 --name es -e ES_JAVA_OPTS="-Xms1g -Xmx1g" -e "discovery.type=single-node" --restart=always -v /data/elk/es/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v /data/elk/es/data:/usr/share/elasticsearch/data -v /data/elk/es/logs:/usr/share/elasticsearch/logs elasticsearch:7.7.1

验证 elasticsearch 是否启动成功:

curl http://localhost:9200

二、部署 Kibana 可视化工具

2.1 安装 Kibana

获取 kibana 镜像:

docker pull kibana:7.7.1

获取elasticsearch容器 ip:

docker inspect --format '{{ .NetworkSettings.IPAddress }}' es

结果:172.17.0.2;

创建 kibana 配置文件:

mkdir -p /data/elk/kibana/
vim /data/elk/kibana/kibana.yml

配置内容:

#Default Kibana configuration for docker target
server.name: kibana
server.host: "0"
elasticsearch.hosts: ["http://172.17.0.2:9200"]
xpack.monitoring.ui.container.elasticsearch.enabled: true
2.2 运行 kibana
docker run -d --restart=always --log-driver json-file --log-opt max-size=100m --log-opt max-file=2 --name kibana -p 5601:5601 -v /data/elk/kibana/kibana.yml:/usr/share/kibana/config/kibana.yml kibana:7.7.1

访问 http://192.168.56.10:5601。这个 IP 是服务器的 IP。Kibana 控制台的界面如下所示,打开 kibana 时,首页会提示让你选择加入一些测试数据,点击 try our sample data 按钮就可以了。

Kibana 界面上会提示你是否导入样例数据,选一个后,Kibana 会帮你自动导入,然后就可以进入到 Discover 窗口搜索日志了。

三、部署 logstash 日志过滤、转换工具

3.1 安装 Java JDK
$ sudo apt install openjdk-8-jdk

修改 /etc/profile 文件:

sudo vim /etc/profile

添加如下的内容到你的 .profile 文件中:

# JAVA
JAVA_HOME="/usr/lib/jdk/jdk-12"
PATH="$PATH:$JAVA_HOME/bin"

再在命令行中打入如下的命令:

source /etc/profile

查看 java 是否配置成功:

java -version
3.2 安装 logstash

下载 logstash 安装包:

curl -L -O https://artifacts.elastic.co/downloads/logstash/logstash-7.7.1.tar.gz

解压安装:

tar -xzvf logstash-7.7.1.tar.gz

要测试 Logstash 安装,请运行最基本的 Logstash 管道。例如:

cd logstash-7.7.1
bin/logstash -e 'input { stdin { } } output { stdout {} }'

等 Logstash 完成启动后,我们在 stdin 里输入以下文字,我们可以看到如下的输出:

当我们打入一行字符然后回车,那么我们马上可以在 stdout 上看到输出的信息。如果我们能看到这个输出,说明我们的 Logstash 的安装是成功的。

我们进入到 Logstash 安装目录,并修改 config/logstash.yml 文件。我们把 config.reload.automatic 设置为 true。

另外一种运行 Logstash 的方式,也是一种最为常见的运行方式,运行时指定 logstash 配置文件。

3.3 配置 logstash

Logstash 配置文件有两个必需元素,输入(inputs)和输出(ouputs),以及一个可选元素 filters。输入插件配置来源数据,过滤器插件在你指定时修改数据,输出插件将数据写入目标。

我们首先需要创建一个配置文件,配置内容如下图所示:

创建 kibana 配置文件 weblog.conf:

mkdir -p /logstash-7.7.1/streamconf
vim /logstash-7.7.1/streamconf/weblog.conf

配置内容如下:

input {tcp {port => 9900}
}filter {grok {match => { "message" => "%{COMBINEDAPACHELOG}" }}mutate {convert => {"bytes" => "integer"}}geoip {source => "clientip"}useragent {source => "agent"target => "useragent"}date {match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]}
}output {stdout { }elasticsearch {hosts => ["localhost:9200"]}
}

在上面,我们同时保留两个输出:stdout 及 elasticsearch。事实上,我们可以定义很多个的输出。stdout 输出对于我们初期的调试是非常有帮助的。等我们完善了所有的调试,我们可以把上面的 stdout 输出关掉。

等更新完这个配置文件后,我们在另外一个 console 中发送第一个 log:

head -n 1 weblog-sample.log | nc localhost 9900

这个命令的意思:我们使用 nc 应用读取第一行数据,然后发送到 TCP 端口号 9900,并查看 console 的输出。

这里的 weblog-sample.log 为样例数据,内容如下,把它放到本地作为日志文件。

14.49.42.25 - - [12/May/2019:01:24:44 +0000] "GET /articles/ppp-over-ssh/ 
HTTP/1.1" 200 18586 "-" "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; 
rv:1.9.2b1) Gecko/20091014 Firefox/3.6b1 GTB5"

logstash 控制台打印出了 weblog-samle.log 中的内容:

这一次,我们打开 Kibana,执行命令,成功看到 es 中的这条记录。

GET logstash/_search

四、部署 Filebeat 日志收集工具

4.1 安装 Filebeat
curl -L -O https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.7.1-linux-x86_64.tar.gz
tar xzvf filebeat-7.7.1-linux-x86_64.tar.gz

请注意:由于 ELK 迭代比较快,我们可以把上面的版本 7.7.1 替换成我们需要的版本即可。我们先不要运行 Filebeat。

4.2 配置 Filebeat

我们在 Filebeat 的安装目录下,可以创建一个这样的 filebeat_apache.yml 文件,它的内容如下,首先先让 filebeat 直接将日志文件导入到 elasticsearch,来确认 filebeat 是否正常工作。

filebeat.inputs:
- type: logenabled: truepaths:- /home/vagrant/logs/*.logoutput.elasticsearch:hosts: ["192.168.56.10:9200"]

paths 对应你的日志文件夹路径,我配置的是这个:/home/vagrant/logs/*.log,之前配置成 /home/vagrant/logs 不能正常收集。另外这里可以放入多个日志路径。

4.3 测试 Filebeat

在使用时,你先要启动 Logstash,然后再启动 Filebeat。

bin/logstash -f weblog.conf

然后,再运行 Filebeat, -c 表示运行指定的配置文件,这里是 filebeat_apache.yml。

./filebeat -e -c filebeat_apache.yml

运行结果如下所示,一定要确认下控制台中是否打印了加载和监控了我们指定的日志。如下图所示,有三个日志文件被监控到了:error.log、info.log、debug.log

我们可以通过这个命令查看 filebeat 的日志是否导入成功了:

curl http://localhost:9200/_cat/indices?v

这个命令会查询 Elasticsearch 中所有的索引,如下图所示,filebeat-7.7.1-* 索引创建成功了。因为我没有配置索引的名字,所以这个索引的名字是默认的。

在 kibana 中搜索日志,可以看到导入的 error 的日志了。不过我们先得在 kibana 中创建 filebeat 的索引(点击 create index pattern 按钮,然后输入 filebeat 关键字,添加这个索引),然后才能在 kibana 的 Discover 控制台查询日志。

创建查询的索引

搜索日志

4.4 Filebeat + Logstash

接下来我们配置 filebeat 收集日志后,输出到 logstash,然后由 logstash 转换数据后输出到 elasticsearch。

filebeat.inputs:- type: logenabled: truepaths:- /home/vagrant/logs/*.logoutput.logstash:hosts: ["localhost:9900"]

修改 logstash 配置文件:

vim /logstash-7.7.1/streamconf/weblog.conf

配置了 input 为 beats,修改了 useragent:

input {  beats {port => "9900"}
}filter {grok {match => { "message" => "%{COMBINEDAPACHELOG}" }}mutate {convert => {"bytes" => "integer"}}geoip {source => "clientip"}useragent {source => "user_agent"target => "useragent"}date {match => ["timestamp", "dd/MMM/yyyy:HH:mm:ss Z"]}
}output {stdout {codec => dots {}}elasticsearch {hosts=>["192.168.56.10:9200"]index => "apache_elastic_example"}
}

然后重新启动 logstash 和 filebeat。有个问题,这次启动 filebeat 的时候,只监测到了一个 info.log 文件,而 error.log 和 debug.log 没有监测到,导致只有 info.log 导入到了 Elasticsearch 中。

filebeat 只监测到了 info.log 文件

logstash 输出结果如下,会有格式化后的日志:

我们在 Kibana dev tools 中可以看到索引 apache_elastic_example,说明索引创建成功,日志也导入到了 elasticsearch 中。

另外注意下 logstash 中的 grok 过滤器,指定的 message 的格式需要和自己的日志的格式相匹配,这样才能将我们的日志内容正确映射到 message 字段上。

例如我的 logback 的配置信息如下:

logback 配置

而我的 logstash 配置如下,和 logback 的 pettern 是一致的。

grok {match => { "message" => "%d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger -%msg%n" }}

然后我们在 es 中就能看到日志文件中的信息了。如下图所示:

至此,Elasticsearch + Logstash + Kibana + Filebeat 部署成功,可以愉快地查询日志了~

后续升级方案:

  • 加上 Kafka。
  • 加上 Grafana 监控。
  • 链路追踪。

五、遇到的问题和解决方案

5.1 拉取 kibana 镜像失败

failed to register layer: Error processing tar file(exit status 2): fatal error: runtime: out of memory

原因是 inodes 资源耗尽 , 清理一下即可:

df -i
sudo find . -xdev -type f | cut -d "/" -f 2 | sort | uniq -c | sort -n
curl -s https://raw.githubusercontent.com/ZZROTDesign/docker-clean/v2.0.4/docker-clean |
sudo tee /usr/local/bin/docker-clean > /dev/null && \
sudo chmod +x /usr/local/bin/docker-clean
docker-clean
5.2 拉取 kibana 镜像失败
docker pull runtime: out of memory

增加虚拟机内存大小。

5.3 Kibana 无法启动
"License information could not be obtained from Elasticsearch due to Error: No Living connections error"}

看下配置的 IP 地址是不是容器的 IP。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/694744.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

windows系统中jenkins构建报错提示“拒绝访问”

一.背景 之前徒弟在windows中安装的jenkins,运行的时候用的是java -jar jenkins.war来运行的。服务器只有1个盘符C盘。今天说构建错误了,问我修改了啥,我年前是修改过构建思路的。 二.问题分析 先看jenkins构建任务的日志,大概是xcopy命令执…

【linux】使用g++调试内存泄露:AddressSanitizer

1、简介 AddressSanitizer(又名 ASan)是 C/C++ 的内存错误检测器。它可以用来检测: 释放后使用(悬空指针) 堆缓冲区溢出 堆栈缓冲区溢出 全局缓冲区溢出 在作用域之后使用 初始化顺序错误 内存泄漏这个工具非常快,只将被检测的程序速度减慢约2倍,而Valgrind将会是程序…

JavaScript:问号?的多种用法

文章目录 条件运算符 (三元运算符)可选链操作符 (?.)空值合并操作符 (??)逻辑赋值运算符(?? )补充:(&&、||) 正则表达式中 条件运算符 (三元运算符) 早在ES1(ECMAScript 1st Edition&#xf…

word软件中硬件图像加速有什么用处?禁用硬件图形加速(G)会影响word文档中插入图片的分辨率吗?

问题描述:word软件中硬件图像加速有什么用处?禁用硬件图形加速(G)会影响word文档中插入图片的分辨率吗? 问题解答: 在 Microsoft Word 中,硬件图形加速主要用于提高图形元素的渲染速度和性能,特别是处理大…

FPS游戏之账号登录流程

在游戏开发中,账号登录的接入流程主要包含以下几个步骤: 创建账号系统:首先需要创建一个账号系统,能够让用户注册账号、登录账号以及找回和修改密码等。这个账号系统可以是自己开发的,也可以是接入的第三方服务如Goog…

如何添加或编辑自定义WordPress侧边栏

WordPress侧边栏是许多WordPress网站上的固定装置。它为您的内容提供了一个垂直空间,您可以在其中帮助读者导航、增加电子邮件列表或社交关注、展示广告等。 因为它是许多WordPress网站不可或缺的一部分,所以我们认为侧边栏值得拥有自己的大型指南。在这…

【leetcode题解C++】763.划分字母区间 and 56.合并区间 and 738.单调递增的数字

763. 划分字母区间 给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度的…

【AIGC】开源声音克隆GPT-SoVITS

GPT-SoVITS 是由 RVC 创始人 RVC-Boss 与 AI 声音转换技术专家 Rcell 共同开发的一款跨语言 TTS 克隆项目,被誉为“最强大中文声音克隆项目” 相比以往的声音克隆项目,GPT-SoVITS 对硬件配置的要求相对较低,一般只需 6GB 显存以上的 GPU 即可…

物体检测-系列教程8:YOLOV5 项目配置

1、项目配置 yolo的v1、v2、v3、v4这4个都有一篇对应的论文,而v5在算法上没有太大的改变,主要是对v4做了一个更好的工程化实现 1.1 环境配置 深度学习环境安装请参考:PyTorch 深度学习 开发环境搭建 全教程 要求torch版本>1.6&#xf…

HBASE学习九:数据写入 -> BulkLoad

1、功能 在实际生产环境中,有这样一种场景:用户数据位于HDFS中,业务需要定期将这部分海量数据导入HBase系统,以执行随机查询更新操作。这种场景如果调用写入API进行处理,极有可能会给RegionServer带来较大的写入压力: 引起RegionServer频繁f lush,进而不断compact、spl…

【Java EE初阶二十一】http的简单理解(二)

2. 深入学习http 2.5 关于referer Referer 描述了当前页面是从哪个页面跳转来的,如果是直接在地址栏输入 url(或者点击收藏夹中的按钮) 都是没有 Referer。如下图所示: HTTP 最大的问题在于"明文传输”,明文传输就容易被第三方获取并篡改. …

#gStore-weekly | gStore最新版1.2之新增内置高级函数详解(一)

gStore1.2版本新增了七个高级函数,我们第2期将继续介绍的高级函数为:整体/局部集聚系数(clusterCoeff)、鲁汶算法(louvain)、K跳计数(kHopCount)/K跳邻居(kHopNeighbor&a…

Javaopp面向对象部分核心知识梳理

目录 前言: 一.面向对象和面向过程 面向过程 面向对象 面向过程与面向对象 二.类和对象 类 概念 成员变量(静态成员变量 和 非静态成员变量) 成员方法(静态成员方法 和 非静态成员方法) 代码块(实…

React之拖动组件的设计(一)

春节终结束了,忙得我头疼。终于有时间弄自己的东西了。今天来写一个关于拖动的实例讲解。先看效果: 这是一个简单的组件设计,如果用原生的js设计就很简单,但在React中有些事件必须要多考虑一些。这是一个系列的文章,…

Linux CAfile 文件下的/ca-bundle.crt怎么生成的

在配置Linux Nginx SSL证书后,通过服务器访问域名时发现,服务器返回的CA证书是:/etc/pki/tls/certs/ca-bundle.crt 正式我在使用Spring Native安装了Docker自动生成的,而且开启了Docker的自启动,如果你和我一样&#x…

常见的几种HTTP状态码

HTTP状态码用于告知客户端与服务器之间发生的情况,以下是一些常见的HTTP状态码及其含义: 1xx 信息性状态码(Informational): 100 Continue:收到请求的初始部分,客户端应继续请求。101 Switching…

10MARL深度强化学习 Value Decomposition in Common-Reward Games

文章目录 前言1、价值分解的研究现状2、Individual-Global-Max Property3、Linear and Monotonic Value Decomposition3.1线性值分解3.2 单调值分解 前言 中心化价值函数能够缓解一些多智能体强化学习当中的问题,如非平稳性、局部可观测、信用分配与均衡选择等问题…

从零开始学习Netty - 学习笔记 - NIO基础 - 文件编程:FileChannel,Path,Files

3.文件编程 3.1.FileChannel FileChannel只能工作在非阻塞模式下面,不能和selector一起使用 获取 不能直接打开FIleChannel,必须通过FileInputSream,或者FileOutputSetream ,或者RandomAccessFile来获取FileChannel 通过FileIn…

互联网高科技公司领导AI工业化,MatrixGo加速人工智能落地

作者:吴宁川 AI(人工智能)工业化与AI工程化正在引领人工智能的大趋势。AI工程化主要从企业CIO角度,着眼于在企业生产环境中规模化落地AI应用的工程化举措;而AI工业化则从AI供应商的角度,着眼于以规模化方式…

Rust ?运算符 Rust读写txt文件

一、Rust ?运算符 ?运算符:传播错误的一种快捷方式。 如果Result是Ok:Ok中的值就是表达式的结果,然后继续执行程序。 如果Result是Err:Err就是整个函数的返回值,就像使用了return &#xff…