数字图像处理:亮度对比度-几何变换-噪声处理

文章目录

    • 数字图像增强
      • 亮度与对比度转换
      • 几何变换
        • 图像裁剪
        • 尺寸变换
        • 图像旋转
      • 噪声处理
        • 添加噪声
        • 处理噪声

数字图像增强

亮度与对比度转换

图像变换可分为以下两种:

  • 点算子:基于像素变换,在这一类图像变换中,仅仅根据输入像素值计算相应的输出像素值
  • 邻域算子:基于图像区域进行变换

两种常用的点算子是用常数对点的像素值进行乘法或加法运算,可以表示为:

g ( i , j ) = α ∗ f ( i , j ) + β g(i, j) = \alpha * f(i, j) + \beta g(i,j)=αf(i,j)+β

其中,图像中点的位置为 ( i , j ) (i, j) (i,j)α值代表增益,β值代表偏置。对图像进行亮度和对比度的变换就是一种点算子,这两个参数分别可以用来控制对比度与亮度。可以通过调节这两个参数的值,来对图片进行对比度或亮度的调节。即将原图像中的每一个像素点都加上一个偏置常数,则可以使图片的亮度变大。类似地,将原图片中的像素点乘上一个增益系数,可以调整图片的对比度。

注意

图片像素点的像素值取值范围是[0,255],一定不要让其溢出,可以使用np.clip进行截断

示例图像:

在这里插入图片描述

import cv2
import numpy as np#  方法1: 基于addWeighted()函数实现
def convert_img1(img, alpha, beta):blank = np.zeros(img.shape, img.dtype)return cv2.addWeighted(img, alpha, blank, 0, beta)# 方法2: 通过for循环手动实现
def convert_img2(img, alpha, beta):rows, cols, chs = img.shapenew_img = np.zeros(img.shape, img.dtype)for i in range(rows):for j in range(cols):for k in range(chs):new_img[i, j, k] = np.clip(alpha * img[i, j, k] + beta, 0, 255)return new_imgimg = cv2.imread('woman.png')
cv2.imwrite('convert_img1.jpg', convert_img1(img, 2.2, 50))
cv2.imwrite('convert_img2.jpg', convert_img2(img, 2.2, 50))

在这里插入图片描述

在上述代码中,函数convert_img1()中的addWeighted()函数的参数列表分别为:[img1,alpha,img2,beta,gamma],代表将两个图片进行如下计算:

n e w _ i m g = a l p h a ∗ i m g 1 + b e t a ∗ i m g 2 + g a m m a new\_img = alpha * img1 + beta * img2 + gamma new_img=alphaimg1+betaimg2+gamma

而函数convert_img2()实现的过程,就是通过for循环修改原始图片的像素值,与函数convert_img1()的过程是一样的,只不过convert_img1()函数调用addWeighted()函数的img2参数中图片的像素值都是0而已。

几何变换

图像的几何变换是指对图片中的图像像素点的位置进行变换的一种操作,它将一幅图像中的坐标位置映射到新的坐标位置,也就是改变像素点的空间位置,同时也要估算新空间位置上的像素值。

图像裁剪

在图像数据的矩阵中裁剪出部分矩阵作为新的图像数据,从而实现对图像的裁剪。

import cv2
import numpy as np# 图像裁剪
img = cv2.imread('woman.png')
print(img.shape)new_img = img[20:300, 20:400]
cv2.imwrite('crop_img.jpg', new_img)

在这里插入图片描述

上述代码实现的过程是将原始的图像从第(20,20)个像素点的位置,裁剪到(300,400)处,裁剪的形状是矩形。

尺寸变换

修改图像的尺寸也就是修改图像的大小,OpenCV的resize()函数可以实现这样的功能。对图像进行尺寸变换时,必然会丢失或者增加一些像素点。在缩放时建议使用区域插值cv2.INTER_AREA,可以避免出现波纹;在放大时建议使用三次样条插值cv2.INTER_CUBIC,但是其计算速度相对较慢。也可以使用线性插值cv2.INTER_LINEAR,默认情况下所有改变图像尺寸大小的操作使用的插值法都是线性插值。

# 图像缩放
small_resize_img = cv2.resize(img, (200, 200), interpolation=cv2.INTER_AREA)
cv2.imwrite('small_resize.jpg', small_resize_img)small_resize_img2 = cv2.resize(img, None, fx=0.5, fy=0.6, interpolation=cv2.INTER_AREA)  # 图像的宽对应的是列数,高对应的是行数
cv2.imwrite('small_resize2.jpg', small_resize_img2)

在这里插入图片描述
在这里插入图片描述

图像旋转

旋转通过getRotationMatrix2D()函数来实现。

# 图像旋转
img = cv2.imread('woman.png')
rows, cols, _ = img.shape
rotated_mat = cv2.getRotationMatrix2D((cols/2, rows/2), 45, 1)  # 第一个参数是旋转中心,第2个为旋转角度,第3个为旋转后的缩放因子
rotated_img = cv2.warpAffine(img, rotated_mat, dsize=(cols, rows))
cv2.imwrite('rot45.jpg', rotated_img)

在这里插入图片描述

噪声处理

对训练数据添加适量噪声,可以使训练后的模型更加鲁棒,对模型的性能提升有一定帮助。对噪声进行消除,可以增加图像的质量。

添加噪声

对图像添加两种常用噪声的方法:

  • 椒盐噪声
  • 高斯噪声
import cv2
import random
import numpy as np# 添加椒盐噪声
def salt_and_pepper_noise(img, percentage):rows, cols, chs = img.shapenum = int(percentage * rows * cols)for i in range(num):x = random.randint(0, rows-1)y = random.randint(0, cols-1)z = random.randint(0, chs-1)if random.randint(0, 1) == 0:img[x, y, z] = 0  # 黑色噪点else:img[x, y, z] = 255  # 白色噪点return img# 添加高斯随机噪声
def gaussian_noise(img, mu, sigma, delta):rows, cols, chs = img.shapefor i in range(rows):for j in range(cols):for k in range(chs):# 生成高斯分布的随机数,与原始数据相加要取整value = int(img[i, j, k] + delta*random.gauss(mu=mu, sigma=sigma))value = np.clip(a_max=255, a_min=0, a=value)img[i, j, k] = valuereturn imgimg = cv2.imread('woman.png')cv2.imwrite('saltPepper.jpg', salt_and_pepper_noise(img, 0.3))
cv2.imwrite('gaussain.jpg', gaussian_noise(img, 0, 1, 100))

在这里插入图片描述

在这里插入图片描述

可以看到上述为图像添加椒盐噪声和高斯噪声的方法。对于高斯噪声来说,函数gaussian_noise()中的mu参数代表了随机数高斯分布的平均值,sigma代表随机数高斯分布的标准差,而参数delta代表一个系数,表明添加高斯噪声的强度。

处理噪声

OpenCV提供了几种滤波方法,如中值滤波、双边滤波、高斯模糊、二维卷积等,

import cv2
import random
import numpy as np# 模糊与滤波
salt_and_pepper_img = cv2.imread('saltPepper.jpg')
gaussain_img = cv2.imread('gaussain.jpg')# 二维卷积
kernel = np.ones((5, 5), np.float32) / 25  # 每个值是0.04
conv_2d_img = cv2.filter2D(salt_and_pepper_img, -1, kernel)
cv2.imwrite('filter_2d_img.jpg', conv_2d_img)# 中值滤波
median_blur_img = cv2.medianBlur(salt_and_pepper_img, 5)  # 参数5表示大小为5x5的区域像素值进行计算
cv2.imwrite('median_blur_img.jpg', median_blur_img)# 高斯模糊
gaussian_blur_img = cv2.GaussianBlur(gaussain_img, (5, 5), 0)
cv2.imwrite('gaussian_blur_img.jpg', gaussian_blur_img)# 双边滤波
bilateral_filter_img = cv2.bilateralFilter(gaussain_img, 9, 75, 75)  # 9代表邻域直径,两个参数75分别代表值域与空域标准差
cv2.imwrite('bilateral_filter_img.jpg', bilateral_filter_img)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

可以看到,中值滤波的效果是最好的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/69418.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【计算机网络】 ARP协议和DNS协议

文章目录 数据包在传输过程中的变化过程单播组播和广播ARP协议ARP代理免费ARP路由数据转发过程DNS协议 数据包在传输过程中的变化过程 在说ARP和DNS之前,我们需要知道数据包在传输过程的变化过程 从图片中可以看到,发送方的原数据最开始是在应用层&…

vscode使用delve调试golang程序

环境配置 delve仓库,含有教程:https://github.com/go-delve/delve golang的debugging教程:https://github.com/golang/vscode-go/wiki/debugging > go version go version go1.20 windows/amd64> go install github.com/go-delve/de…

华为云Stack的学习(五)

六、华为云stack服务简介 1.云服务在华为云Stack中的位置 云服务对接多个数据中心资源池层提供的资源,并向各种行业应用提供载体。 2.华为云Stack通用服务 2.1 云计算的服务模式 2.2 计算相关的云服务 2.3 存储相关的云服务 2.4 网络相关的云服务 3.云化案例 **…

如何取消KEIL-MDK工程中出现的CMSIS绿色图标

如何取消KEIL-MDK工程中出现的CMSIS绿色图标?我以前经常遇到,不知道怎么搞,好像也不影响编译结果。以前问过其他人,但是不知道怎么搞,相信很多人也遇到过。水平有限,表达不清楚,见下图&#xff…

Bootstrap的标题类(标题样式h1~h6)

Bootstrap 的标题字体大小通常遵循以下样式规则: h1 标题的字体大小为 2.5rem(40像素)。h2 标题的字体大小为 2rem(32像素)。h3 标题的字体大小为 1.75rem(28像素)。h4 标题的字体大小为 1.5re…

【trie树】CF Edu12 E

Problem - E - Codeforces 题意: 思路: 这其实是一个套路题 区间异或转化成前缀异或,然后枚举 i 对于每一个 i,ai ^ x k,对 x 计数 先建一棵字典树,然后在字典树上计数 先去对 > k 的部分计数&a…

国际版阿里云/腾讯云:弹性高性能计算E-HPC入门概述

入门概述 本文介绍E-HPC的运用流程,帮助您快速上手运用弹性高性能核算。 下文以创立集群,在集群中安装GROMACS软件并运转水分子算例进行高性能核算为例,介绍弹性高性能核算的运用流程,帮助您快速上手运用弹性高性能核算。运用流程…

易云维®医院后勤管理系统软件利用物联网智能网关帮助实现医院设备实现智能化、信息化管理

近年来,我国医院逐渐意识到医院设备信息化管理的重要性,逐步建立医院后勤管理系统软件,以提高信息化管理水平。该系统是利用数据库技术,为医院的中央空调、洁净空调、电梯、锅炉、医疗设备等建立电子档案,把设备监控、…

性能炸裂c++20协程+iocp/epoll,超轻量高性能异步库开发实战

前言: c20出来有一段时间了。其中一大功能就是终于支持协程了(c作为行业大哥大级别的语言,居然到C20才开始支持协程,我也是无力吐槽了,让多少人等了多少年,等了多少青春)但千呼万唤他终于还是来…

基于Matlab实现多个图像融合案例(附上源码+数据集)

图像融合是将多幅图像合成为一幅图像的过程,旨在融合不同图像的信息以获得更多的细节和更丰富的视觉效果。在本文中,我们将介绍如何使用Matlab实现图像融合。 文章目录 简单案例源码数据集下载 简单案例 首先,我们需要了解图像融合的两种主…

【STM32】IIC的初步使用

IIC简介 物理层 连接多个devices 它是一个支持设备的总线。“总线”指多个设备共用的信号线。在一个 I2C 通讯总线中,可连接多个 I2C 通讯设备,支持多个通讯主机及多个通讯从机。 两根线 一个 I2C 总线只使用两条总线线路,一条双向串行数…

Android Studio 汉化

一、汉化: 查看版本号,查看Android Studio版本,根据版本下载对应的汉化包。例如我的是223。 下载汉化包: 中文语言包下载地址 找到对应的版本 回到Android Studio 1、进入设置 2、从磁盘安装插件 3、选择下载好的包点击OK 4、…

介绍OpenCV

OpenCV是一个开源计算机视觉库,可用于各种任务,如物体识别、人脸识别、运动跟踪、图像处理和视频处理等。它最初由英特尔公司开发,目前由跨学科开发人员社区维护和支持。OpenCV可以在多个平台上运行,包括Windows、Linux、Android和…

AJAX学习笔记6 JQuery对AJAX进行封装

AJAX学习笔记5同步与异步理解_biubiubiu0706的博客-CSDN博客 AJAX请求相关的代码都是类似的,有很多重复的代码,这些重复的代码能不能不写,能不能封装一个工具类。要发送ajax请求的话,就直接调用这个工具类中的相关函数即可。 用J…

深圳-海岸城购物中心数据分析

做数据分析的时候,如果要对商场进行分析,可以从这些数据纬度进行分析,如下图所示: 截图来源于数位观察:https://www.swguancha.com/

如何炒伦敦金

由于疫情的影响,目前世界上多个国家降低存款利率,以推动经济发展,由此也引发了比较严重的通胀问题,尤其是在俄乌冲突之后,国际油价不断上涨,加大了这种通货膨胀的影响。进行伦敦金投资是一种规避通胀的好方…

Python爬虫-某网酒店数据

前言 本文是该专栏的第5篇,后面会持续分享python爬虫案例干货,记得关注。 本文以某网的酒店数据为例,实现根据目标城市获取酒店数据。具体思路和方法跟着笔者直接往下看正文详细内容。(附带完整代码) 正文 地址:aHR0cHM6Ly93d3cuYnRoaG90ZWxzLmNvbS9saXN0L3NoYW5naGFp …

Python 中下划线详解(_、_xx、xx_、__xx、__xx__)

文章目录 1 概述2 演示2.1 _:不重要的变量2.2 _xx:声明私有,仅内部调用2.3 xx_:区分关键字2.4 __xx:声明私有,仅当前类中可用2.5 __xx__:内置函数 1 概述 2 演示 2.1 _:不重要的变…

jmeter setUp Thread Group

SetUp Thread Group 是一种特殊类型的线程组,它用于在主测试计划执行之前执行一些初始化任务。 SetUp Thread Group 通常用于以下几种情况: 用户登录:在模拟用户执行实际测试之前,模拟用户登录到系统以获取访问权限。 创建会话&a…

OpenWrt编译自己的应用程序

编译OpenWrt的应用程序可以参考OpenWrt内部其他应用程序的例程,来编写成自己的应用程序 一、OpenWrt源代码获取与编译 1.1、搭建环境 下载OpenWrt的官方源码: git clone https://github.com/openwrt/openwrt.git1.2、安装编译依赖项 sudo apt update…