【Python】 剪辑法欠采样 CNN压缩近邻法欠采样

借鉴:关于K近邻(KNN),看这一篇就够了!算法原理,kd树,球树,KNN解决样本不平衡,剪辑法,压缩近邻法 - 知乎

但是不要看他里面的代码,因为作者把代码里的一些符号故意颠倒了 ,比如“==”改成“!=”,还有乱加“~”,看明白逻辑才能给他改过来

一、剪辑法

        当训练集数据中存在一部分不同类别数据的重叠时(在一部分程度上说明这部分数据的类别比较模糊),这部分数据会对模型造成一定的过拟合,那么一个简单的想法就是将这部分数据直接剔除掉即可,也就是剪辑法。

        剪辑法将训练集 D 随机分成两个部分,一部分作为新的训练集 Dtrain,一部分作为测试集 Dtest,然后基于 Dtrain,使用 KNN 的方法对 Dtest 进行分类,并将其中分类错误的样本从整体训练集 D 中剔除掉,得到 Dnew。

        由于对训练集 D 的划分是随机划分,难以保证数据重叠部分的样本在第一次剪辑时就被剔除,因此在得到 Dnew 后,可以对 Dnew 继续进行上述操作数次,这样可以得到一个比较清爽的类别分界。

        效果如下图:

        附上可直接运行的代码:

from sklearn import datasets
import matplotlib.pyplot as pyplot
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier as KNN
import numpy as np
from collections import Counter
from numpy import where# make_classification用于手动构造数据
# 1000个样本,分成4类
X, y = datasets.make_classification(n_samples=1000, n_features=2,n_informative=2, n_redundant=0, n_repeated=0,n_classes=4, n_clusters_per_class=1)# # # 画出二维散点图
# for label, _ in counter.items():
# 	row_ix = where(y == label)[0]
# 	pyplot.scatter(X[row_ix, 0], X[row_ix, 1], label=str(label))
# pyplot.legend()
# pyplot.show()# 剪辑10次
for i in range(10):x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.5)k = 5KNN_clf = KNN(n_neighbors=k)KNN_clf.fit(x_train, y_train)  # 用训练集训练KNNy_predict = KNN_clf.predict(x_test)  # 用测试集测试cond = y_predict == y_testx_test = x_test[cond]  # 把预测错误的从整体数据集中剔除掉y_test = y_test[cond]  # 把预测错误的从整体数据集中剔除掉X = np.vstack([x_train, x_test])  # 为下一次循环做准备(剔除掉本轮预测错误的y = np.hstack([y_train, y_test])  # 为下一次循环做准备(剔除掉本轮预测错误的# summarize the new class distribution
counter = Counter(y)
print(counter)# 画出二维散点图
for label, _ in counter.items():row_ix = where(y == label)[0]pyplot.scatter(X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()
pyplot.show()

        以上使用了k=20的参数进行剪辑的结果,循环了10次,一般而言,k越大,被抛弃的样本会越多,因为被分类的错误的概率更大。

二、CNN压缩近邻法欠采样

        

        压缩近邻法的想法是认为同一类型的样本大量集中在类簇的中心,而这些集中在中心的样本对分类没有起到太大的作用,因此可以舍弃掉这些样本。

        其做法是将训练集随机分为两个部分,第一个部分为 store,占所有样本的 10% 左右,第二个部分为 grabbag,占所有样本的 90% 左右,然后将 store 作为训练集训练 KNN 模型,grabbag 作为测试集,将分类错误的样本从 grabbag 中移动到 store 里,然后继续用增加了样本的 store 和减少了样本的 grabbag 再次训练和测试 KNN 模型,直到 grabbag 中所有样本被分类正确,或者 grabbag 中样本数为0。

        在压缩结束之后,store 中存储的是初始化时随机选择的 10% 左右的样本,以及在之后每一次循环中被分类错误的样本,这些被分类错误的样本集中在类簇的边缘,认为是对分类作用较大的样本。

        CNN欠采样已经有相应的Python实现库了,相应的方法是CondensedNearestNeighbour(),下面是可直接运行的代码。

# Undersample and plot imbalanced dataset with the Condensed Nearest Neighbor Rule
from collections import Counter
from sklearn.datasets import make_classification
from imblearn.under_sampling import CondensedNearestNeighbour
from matplotlib import pyplot
from numpy import where# make_classification方法用于生成分类任务的人造数据集
# X是数据,几维都可以,n_features=4表示4维
# y用0/1表示类别,weights调整0和1的占比
X, y = make_classification(n_samples=500, n_classes=2, n_features=3, n_redundant=0,# n_clusters_per_class表示每个类别多少簇  # flip_y噪声,增加分类难度n_clusters_per_class=2, weights=[0.5], flip_y=0, random_state=1)# summarize class distribution
counter = Counter(y)  # {0: 990, 1: 10} counter是一个字典,value存储类别,key存储类别个数
print(counter)# ==================CNN有直接可以调用的包  n_neighbors设置k值,k值越小越省时间,就设置为1吧
undersample = CondensedNearestNeighbour(n_neighbors=1)
# transform the dataset
X, y = undersample.fit_resample(X, y)# summarize the new class distribution
counter = Counter(y)
print(counter)# scatter plot of examples by class label
for label, _ in counter.items():row_ix = where(y == label)[0]pyplot.scatter(X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()
pyplot.show()

        但是我觉得这个CondensedNearestNeighbour()方法的可操作性太低,所以没用这个方法,而是根据CNN的原理(CNN底层是训练KNN)去写的

from sklearn import datasets
import matplotlib.pyplot as pyplot
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier as KNN
import numpy as np
from collections import Counter
from numpy import where# make_classification用于手动构造数据
# 1000个样本,分成4类
X, y = datasets.make_classification(n_samples=1000, n_features=2,n_informative=2, n_redundant=0, n_repeated=0,n_classes=4, n_clusters_per_class=1, random_state=1)
counter = Counter(y)
# 画出二维散点图
for label, _ in counter.items():row_ix = where(y == label)[0]pyplot.scatter(X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()
pyplot.show()# 10%作为训练集,90%作为测试集
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.9)while True:k = 1KNN_clf = KNN(n_neighbors=k)KNN_clf.fit(x_train, y_train)y_predict = KNN_clf.predict(x_test)cond = y_predict == y_test  # cond记录分类的对与错,分类错是False,正确是True# 都分类正确,退出if  cond.all():print('所有测试集都分类正确,CNN正常结束')breakx_train = np.vstack([x_train, x_test[~cond]])  # 把分类错误(cond的值是False)的移动到训练集里y_train = np.hstack([y_train, y_test[~cond]])x_test = x_test[cond]  # 把分类对的继续作为下一轮的测试集y_test = y_test[cond]if len(x_test) == 0:print("所有样本都能做到分类错误,也就是结果集=原始数据集,一般不会出现这种情况")break# summarize the new class distribution
counter = Counter(y_train)
print(counter)# 画出二维散点图
for label, _ in counter.items():row_ix = where(y_train == label)[0]pyplot.scatter(x_train[row_ix, 0], x_train[row_ix, 1], label=str(label))
pyplot.legend()
pyplot.show()

2.1 改进版——指定压缩后样本大小的CNN

在如下代码中,用sampleNum指定全体样本数量,用endNum指定压缩后样本数量

from sklearn import datasets
import matplotlib.pyplot as pyplot
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier as KNN
import numpy as np
from collections import Counter
from numpy import wheresampleNum = 1000
endNum = 500
k = 1  # KNN算法的K值
# make_classification用于手动构造数据
# 1000个样本,分成4类
X, y = datasets.make_classification(n_samples=sampleNum, n_features=2,n_informative=2, n_redundant=0, n_repeated=0,n_classes=4, n_clusters_per_class=1, random_state=1)
# counter = Counter(y)
# # 画出二维散点图
# for label, _ in counter.items():
# 	row_ix = where(y == label)[0]
# 	pyplot.scatter(X[row_ix, 0], X[row_ix, 1], label=str(label))
# pyplot.legend()
# pyplot.show()# 10%作为训练集,90%作为测试集
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.9)
# print(x_train.shape[0])  # 100nowNum = x_train.shape[0]  # 用来控制 训练集/筛选后的样本数 满足resultNum就停下, 初始有x_train这么多个while True:KNN_clf = KNN(n_neighbors=k)KNN_clf.fit(x_train, y_train)y_predict = KNN_clf.predict(x_test)cond = y_predict == y_test  # cond记录分类的对与错,分类错是False,正确是True# 都分类正确,退出if cond.all():print('所有测试集都分类正确,CNN自动结束,但是结果集没凑够呢!')break# 如果结果集数量不够要求的endNum,继续下一轮if nowNum+y_test[~cond].shape[0] < endNum:nowNum = nowNum+y_test[~cond].shape[0]print("目前结果集数量:", nowNum)x_train = np.vstack([x_train, x_test[~cond]])  # 把分类错误(cond的值是False)的移动到训练集里y_train = np.hstack([y_train, y_test[~cond]])x_test = x_test[cond]  # 把分类对的继续作为下一轮的测试集y_test = y_test[cond]# 如果结果集数量超过endNum,我们只要测试集里分类错误的前endNum-nowNum个else:# 记录前endNum-nowNum个的位置(截取位置condCut = 0  # 记录截取位置for i in range(cond.shape[0]):if not cond[i]:nowNum = nowNum + 1if nowNum == endNum:condCut = i  # 在cond[condCut]处刚好是我们要的第endNum个结果集样本break# 把cond[condCut]后面的都设置成Truecond[condCut+1:] = Truex_train = np.vstack([x_train, x_test[~cond]])  # 把分类错误(cond的值是False)的移动到训练集里y_train = np.hstack([y_train, y_test[~cond]])print("结果集的数量为", x_train.shape[0], "满足endNum=", endNum)breakif len(x_test) == 0:print("所有样本都能做到分类错误,也就是结果集=原始数据集,一般不会出现这种情况")break# summarize the new class distribution
counter = Counter(y_train)
print(counter)# 画出二维散点图
for label, _ in counter.items():row_ix = where(y_train == label)[0]pyplot.scatter(x_train[row_ix, 0], x_train[row_ix, 1], label=str(label))
pyplot.legend()
pyplot.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/693746.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入探索STM32的存储选项:片内RAM、片内Flash与SDRAM

博客&#xff1a;深入探索STM32的存储选项&#xff1a;片内RAM、片内Flash与SDRAM 在嵌入式系统设计中&#xff0c;存储管理是一个至关重要的方面&#xff0c;尤其是对于基于STM32这类强大的微控制器来说。STM32系列微控制器因其高性能、低功耗以及灵活的存储选项而广受欢迎。本…

RabbitMQ集群架构

1.RabbitMQ集群模式介绍 普通集群 默认的集群模式&#xff0c;比如有节点node1、node2和node3&#xff0c;三个节点是普通集群&#xff0c;但是他们仅有相同的元数据&#xff0c;即交换机、队列的结构消息只存在其中的一个节点里面&#xff0c;假如消息A存储在node1节点&#x…

jquery将网页html文档导出为pdf图片

jquery将网页html文档导出为pdf图片 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content&q…

leetcode经典题库(简单)

文章目录 1.两数之和2.反转链表3.合并两个有序列表4.合并两个有序链表5.删除有序数组中的重复项6.从数组中移除元素7. 搜索指定数值在数组中的插入位置8. 数组最后一位加一9. 合并两个有序数组在leetcode上刷了几个和数组相关的简单题,记录在这里。 1.两数之和 给定一个整数…

Qt多线程调用python并接收调用数据

功能: qt中用多线程的方式调用python脚本,完成C++和python之间的数据交互。为了满足多任务并发的要求,将调用python的逻辑部分封装到QThread的子类PyApiThread中。 主要实现: 包括PyApiThread的实现以及在主线程中如何使用 PyApiThread的的实现,分.h和.cpp两个文件 #ifnd…

Python中HTTP请求的安全性考虑与实践:安全帽下的网络舞者

在Python的HTTP请求世界里&#xff0c;安全性就像是一个必不可少的舞伴&#xff0c;时刻陪伴着你的网络舞步。想象一下&#xff0c;你正在举办一场网络舞会&#xff0c;而安全性则是那个穿着防弹舞衣&#xff0c;戴着安全帽的忠诚舞伴&#xff0c;确保你在舞池中尽情舞动而不必…

JAVA面试题21

Java中的四个访问修饰符&#xff08;access modifiers&#xff09;是什么&#xff1f;它们的区别是什么&#xff1f; 答案&#xff1a;Java中的四个访问修饰符是public、private、protected和默认&#xff08;即不使用修饰符&#xff09;。它们的区别在于它们允许的访问级别不同…

百度百科词条创建机构有哪些?

百度百科&#xff0c;作为一个权威的知识分享平台&#xff0c;拥有着极高的权重和流量。在这个平台上&#xff0c;词条的创建和维护显得尤为重要&#xff0c;它直接关系到一个人或企业的形象和品牌的塑造。因此&#xff0c;百度百科词条的创建和维护逐渐成为了一个专业化的服务…

数据结构---字典树(Tire)

字典树是一种能够快速插入和查询字符串的多叉树结构&#xff0c;节点的编号各不相同&#xff0c;根节点编号为0 Trie树&#xff0c;即字典树&#xff0c;又称单词查找树或键树&#xff0c;是一种树形结构&#xff0c;是一种哈希树的变种。 核心思想也是通过空间来换取时间上的…

C#写的一个计算DCI-P3色域和SRGB的小工具

文章最后附带分享链接与提取码 方便需要测试屏幕的小伙伴&#xff0c;只需要输入RGB就能得到覆盖率与比率&#xff0c;W计算色温&#xff0c;不测也要写上&#xff0c;不然会报错 链接&#xff1a;https://pan.baidu.com/s/1wdmAwmwiXjNvn1tGsvy0HA 提取码&#xff1a;1234

安卓学习笔记之五:Android Studio_骰子案例3(Kotlin搭配 Jetpack Compose实现)

使用 Compose 创建一款交互式 Dice Roller Android 应用。 完成&#xff1a; 定义可组合函数。使用组合创建布局。使用 Button 可组合项创建按钮。导入 drawable 资源。使用 Image 可组合项显示图片。使用可组合项构建交互式界面。使用 remember 可组合项将组合中的对象存储到…

【Docker】有用的命令

文章目录 DockerDocker 镜像与容器的差异Docker的好处Hypervisor运维 一、安装docker二、启动docker三、获取docker镜像四、创建镜像使用命令行创建镜像使用dockerfile创建镜像 五、docker报错 Docker docker镜像&#xff08;Image&#xff09; docker镜像类似于虚拟机镜像&…

sql建库,建表基础操作

当涉及到SQL建库和建表操作时&#xff0c;以下是一个简单的示例&#xff1a; 1. 建库&#xff08;创建数据库&#xff09; sql复制代码 CREATE DATABASE mydatabase; 上述语句将创建一个名为mydatabase的数据库。 2. 选择数据库 在创建表之前&#xff0c;需要选择要在其中…

linux 安装anaconda踩坑——哈希值对不上

下载安装包时执行命令 curl -O https://repo.anaconda.com/archive/Anaconda3-<INSTALLER_VERSION>-Linux-x86_64.sh 其中的<INSTALLER_VERSION>需要填写下载的anaconda版本号&#xff0c;于是我就点开官网提供的版本号链接&#xff0c;将我要下载的版本号copy了一…

pom.xml常见依赖及其作用

1.org.mybatis.spring.boot下的mybatis-spring-boot-starter&#xff1a;这个依赖是mybatis和springboot的集成库&#xff0c;简化了springboot项目中使用mybatis进行持久化操作的配置和管理 2.org.projectlombok下的lombok&#xff1a;常用注解Data、NoArgsConstructor、AllA…

270.【华为OD机试真题】字符串拼接(深度优先搜索(DFS)-JavaPythonC++JS实现)

🚀点击这里可直接跳转到本专栏,可查阅顶置最新的华为OD机试宝典~ 本专栏所有题目均包含优质解题思路,高质量解题代码(Java&Python&C++&JS分别实现),详细代码讲解,助你深入学习,深度掌握! 文章目录 一. 题目-字符串拼接二.解题思路三.题解代码Python题解代…

如何在Ubuntu部署Emlog,并将本地博客发布至公网可远程访问

文章目录 前言1. 网站搭建1.1 Emolog网页下载和安装1.2 网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2.Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试总结 前言 博客作为使…

介绍C++加C++代码

C是一种高效的、通用的、支持多范式的编程语言&#xff0c;支持过程式编程、面向对象编程和泛型编程等多种编程范式。C的设计提供了低级别的存取权限&#xff0c;并且要求程序员管理所有的内存细节。C最初被设计为一种“带类的C”&#xff0c;但它在后来的发展中逐渐增加了更多…

2.20学习总结

1.【模板】单源最短路径&#xff08;弱化版&#xff09; 2.【模板】单源最短路径&#xff08;标准版&#xff09; 3.无线通讯网 4.子串简写 5.整数删除 6.拆地毯 【模板】单源最短路径&#xff08;标准版&#xff09;https://www.luogu.com.cn/problem/P4779 题目描述 给定一个…

Go 语言中,`rune(a)` 将 `a` 转换为 `rune` 类型

在 Go 语言中&#xff0c;rune(a) 将 a 转换为 rune 类型。这里的 a 可以是任何可以被转换为 Unicode 字符的类型&#xff0c;比如另一个 rune 或者一个 byte。 接着&#xff0c;当你用 int() 函数对其进行进一步转换&#xff1a;int(rune(a))&#xff0c;这会将 rune(a) 转换…