书生开源大模型训练营-第3讲笔记

5.Langchain和InternLM搭建知识库

5.1环境

还是一样,开发机中创建镜像,以及所需依赖

pip install modelscope==1.9.5
pip install transformers==4.35.2
pip install streamlit==1.24.0
pip install sentencepiece==0.1.99
pip install accelerate==0.24.1

5.2模型参数

# 直接拷贝,较快
mkdir -p /root/data/model/Shanghai_AI_Laboratory
cp -r /root/share/temp/model_repos/internlm-chat-7b /root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b# 下载,较慢
import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('Shanghai_AI_Laboratory/internlm-chat-7b', cache_dir='/root/data/model', revision='v1.0.3')

同时,我们要使用开源词向量sentence transformer,从huggingface上直接下载

pip install -U huggingface_hub
import os# 设置环境变量
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'# 下载模型
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/data/model/sentence-transformer')

5.3下载 NLTK 相关资源

我们在使用开源词向量模型构建开源词向量的时候,需要用到第三方库 nltk 的一些资源。

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

5.4项目代码

cd /root/data
git clone https://github.com/InternLM/tutorial

5.5数据库搭建

5.5.1数据准备

我们选择由上海人工智能实验室开源的一系列大模型工具开源仓库作为语料库来源,包括

  • OpenCompass:面向大模型评测的一站式平台
  • IMDeploy:涵盖了 LLM 任务的全套轻量化、部署和服务解决方案的高效推理工具箱
  • XTuner:轻量级微调大语言模型的工具库
  • InternLM-XComposer:浦语·灵笔,基于书生·浦语大语言模型研发的视觉-语言大模型
  • Lagent:一个轻量级、开源的基于大语言模型的智能体(agent)框架
  • InternLM:一个开源的轻量级训练框架,旨在支持大模型训练而无需大量的依赖
# 进入到数据库盘
cd /root/data
# clone 上述开源仓库
git clone https://gitee.com/open-compass/opencompass.git
git clone https://gitee.com/InternLM/lmdeploy.git
git clone https://gitee.com/InternLM/xtuner.git
git clone https://gitee.com/InternLM/InternLM-XComposer.git
git clone https://gitee.com/InternLM/lagent.git
git clone ttps://gitee.com/InternLM/InternLM.git

get_files:得到所有md和txt结尾的文本文件

import os 
def get_files(dir_path):# args:dir_path,目标文件夹路径file_list = []for filepath, dirnames, filenames in os.walk(dir_path):# os.walk 函数将递归遍历指定文件夹for filename in filenames:# 通过后缀名判断文件类型是否满足要求if filename.endswith(".md"):# 如果满足要求,将其绝对路径加入到结果列表file_list.append(os.path.join(filepath, filename))elif filename.endswith(".txt"):file_list.append(os.path.join(filepath, filename))return file_list
5.5.2加载数据

​ 得到所有目标文件路径之后,我们可以使用 LangChain 提供的 FileLoader 对象来加载目标文件,得到由目标文件解析出的纯文本内容。由于不同类型的文件需要对应不同的 FileLoader,我们判断目标文件类型,并针对性调用对应类型的 FileLoader,同时,调用 FileLoader 对象的 load 方法来得到加载之后的纯文本对象

from tqdm import tqdm
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoaderdef get_text(dir_path):# args:dir_path,目标文件夹路径# 首先调用上文定义的函数得到目标文件路径列表file_lst = get_files(dir_path)# docs 存放加载之后的纯文本对象docs = []# 遍历所有目标文件for one_file in tqdm(file_lst):file_type = one_file.split('.')[-1]if file_type == 'md':loader = UnstructuredMarkdownLoader(one_file)elif file_type == 'txt':loader = UnstructuredFileLoader(one_file)else:# 如果是不符合条件的文件,直接跳过continuedocs.extend(loader.load())return docs
5.5.3构建向量数据库

得到该列表之后,我们就可以将它引入到 LangChain 框架中构建向量数据库。由纯文本对象构建向量数据库,我们需要先对文本进行分块,接着对文本块进行向量化。

LangChain 提供了多种文本分块工具,此处我们使用字符串递归分割器,并选择分块大小为 500,块重叠长度为 150(由于篇幅限制,此处没有展示切割效果,学习者可以自行尝试一下,想要深入学习 LangChain 文本分块可以参考教程《LangChain - Chat With Your Data》

from langchain.text_splitter import RecursiveCharacterTextSplittertext_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)

接着我们选用开源词向量模型 Sentence Transformer 来进行文本向量化。LangChain 提供了直接引入 HuggingFace 开源社区中的模型进行向量化的接口:

from langchain.embeddings.huggingface import HuggingFaceEmbeddingsembeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")

同时,考虑到 Chroma 是目前最常用的入门数据库,我们选择 Chroma 作为向量数据库,基于上文分块后的文档以及加载的开源向量化模型,将语料加载到指定路径下的向量数据库:

from langchain.vectorstores import Chroma# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()
5.5.4整合代码
# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os# 获取文件路径函数
def get_files(dir_path):# args:dir_path,目标文件夹路径file_list = []for filepath, dirnames, filenames in os.walk(dir_path):# os.walk 函数将递归遍历指定文件夹for filename in filenames:# 通过后缀名判断文件类型是否满足要求if filename.endswith(".md"):# 如果满足要求,将其绝对路径加入到结果列表file_list.append(os.path.join(filepath, filename))elif filename.endswith(".txt"):file_list.append(os.path.join(filepath, filename))return file_list# 加载文件函数
def get_text(dir_path):# args:dir_path,目标文件夹路径# 首先调用上文定义的函数得到目标文件路径列表file_lst = get_files(dir_path)# docs 存放加载之后的纯文本对象docs = []# 遍历所有目标文件for one_file in tqdm(file_lst):file_type = one_file.split('.')[-1]if file_type == 'md':loader = UnstructuredMarkdownLoader(one_file)elif file_type == 'txt':loader = UnstructuredFileLoader(one_file)else:# 如果是不符合条件的文件,直接跳过continuedocs.extend(loader.load())return docs# 目标文件夹
tar_dir = ["/root/data/InternLM","/root/data/InternLM-XComposer","/root/data/lagent","/root/data/lmdeploy","/root/data/opencompass","/root/data/xtuner"
]# 加载目标文件
docs = []
for dir_path in tar_dir:docs.extend(get_text(dir_path))# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 构建向量数据库
# 定义持久化路径
persist_directory = 'data_base/vector_db/chroma'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

5.6InternLM 接入 LangChain

为便捷构建 LLM 应用,我们需要基于本地部署的 InternLM,继承 LangChain 的 LLM 类自定义一个 InternLM LLM 子类,从而实现将 InternLM 接入到 LangChain 框架中。完成 LangChain 的自定义 LLM 子类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 InternLM 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM
import torchclass InternLM_LLM(LLM):# 基于本地 InternLM 自定义 LLM 类tokenizer : AutoTokenizer = Nonemodel: AutoModelForCausalLM = Nonedef __init__(self, model_path :str):# model_path: InternLM 模型路径# 从本地初始化模型super().__init__()print("正在从本地加载模型...")self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to(torch.bfloat16).cuda()self.model = self.model.eval()print("完成本地模型的加载")def _call(self, prompt : str, stop: Optional[List[str]] = None,run_manager: Optional[CallbackManagerForLLMRun] = None,**kwargs: Any):# 重写调用函数system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文."""messages = [(system_prompt, '')]response, history = self.model.chat(self.tokenizer, prompt , history=messages)return response@propertydef _llm_type(self) -> str:return "InternLM"

5.7构建检索问答链

LangChain 通过提供检索问答链对象来实现对于 RAG 全流程的封装。所谓检索问答链,即通过一个对象完成检索增强问答(即RAG)的全流程,针对 RAG 的更多概念,我们会在视频内容中讲解,也欢迎读者查阅该教程来进一步了解:《LLM Universe》。我们可以调用一个 LangChain 提供的 RetrievalQA 对象,通过初始化时填入已构建的数据库和自定义 LLM 作为参数,来简便地完成检索增强问答的全流程,LangChain 会自动完成基于用户提问进行检索、获取相关文档、拼接为合适的 Prompt 并交给 LLM 问答的全部流程。

5.7.1加载向量数据库
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os# 定义 Embeddings
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 向量数据库持久化路径
persist_directory = 'data_base/vector_db/chroma'# 加载数据库
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings
)
5.7.2实例化自定义 LLM 与 Prompt Template

我们实例化一个基于 InternLM 自定义的 LLM 对象:

from LLM import InternLM_LLM
llm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")
llm.predict("你是谁")

构建检索问答链,还需要构建一个 Prompt Template,该 Template 其实基于一个带变量的字符串,在检索之后,LangChain 会将检索到的相关文档片段填入到 Template 的变量中,从而实现带知识的 Prompt 构建。我们可以基于 LangChain 的 Template 基类来实例化这样一个 Template 对象:

from langchain.prompts import PromptTemplate# 我们所构造的 Prompt 模板
template = """使用以下上下文来回答用户的问题。如果你不知道答案,就说你不知道。总是使用中文回答。
问题: {question}
可参考的上下文:
···
{context}
···
如果给定的上下文无法让你做出回答,请回答你不知道。
有用的回答:"""# 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)
5.7.3构建检索问答链

最后,可以调用 LangChain 提供的检索问答链构造函数,基于我们的自定义 LLM、Prompt Template 和向量知识库来构建一个基于 InternLM 的检索问答链:

from langchain.chains import RetrievalQAqa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

得到的 qa_chain 对象即可以实现我们的核心功能,即基于 InternLM 模型的专业知识库助手。我们可以对比该检索问答链和纯 LLM 的问答效果

# 检索问答链回答效果
question = "什么是InternLM"
result = qa_chain({"query": question})
print("检索问答链回答 question 的结果:")
print(result["result"])# 仅 LLM 回答效果
result_2 = llm(question)
print("大模型回答 question 的结果:")
print(result_2)

5.8部署web demo

在完成上述核心功能后,我们可以基于 Gradio 框架将其部署到 Web 网页,从而搭建一个小型 Demo,便于测试与使用。

我们首先将上文的代码内容封装为一个返回构建的检索问答链对象的函数,并在启动 Gradio 的第一时间调用该函数得到检索问答链对象,后续直接使用该对象进行问答对话,从而避免重复加载模型:

from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
import os
from LLM import InternLM_LLM
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
import gradio as grdef load_chain():# 加载问答链# 定义 Embeddingsembeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 向量数据库持久化路径persist_directory = 'data_base/vector_db/chroma'# 加载数据库vectordb = Chroma(persist_directory=persist_directory,  # 允许我们将persist_directory目录保存到磁盘上embedding_function=embeddings)# 加载自定义 LLMllm = InternLM_LLM(model_path = "/root/data/model/Shanghai_AI_Laboratory/internlm-chat-7b")# 定义一个 Prompt Templatetemplate = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。{context}问题: {question}有用的回答:"""QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)# 运行 chainqa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})return qa_chainclass Model_center():"""存储检索问答链的对象 """def __init__(self):# 构造函数,加载检索问答链self.chain = load_chain()def qa_chain_self_answer(self, question: str, chat_history: list = []):"""调用问答链进行回答"""if question == None or len(question) < 1:return "", chat_historytry:chat_history.append((question, self.chain({"query": question})["result"]))# 将问答结果直接附加到问答历史中,Gradio 会将其展示出来return "", chat_historyexcept Exception as e:return e, chat_history# 实例化核心功能对象
model_center = Model_center()
# 创建一个 Web 界面
block = gr.Blocks()
with block as demo:with gr.Row(equal_height=True):   with gr.Column(scale=15):# 展示的页面标题gr.Markdown("""<h1><center>InternLM</center></h1><center>书生浦语</center>""")with gr.Row():with gr.Column(scale=4):# 创建一个聊天机器人对象chatbot = gr.Chatbot(height=450, show_copy_button=True)# 创建一个文本框组件,用于输入 prompt。msg = gr.Textbox(label="Prompt/问题")with gr.Row():# 创建提交按钮。db_wo_his_btn = gr.Button("Chat")with gr.Row():# 创建一个清除按钮,用于清除聊天机器人组件的内容。clear = gr.ClearButton(components=[chatbot], value="Clear console")# 设置按钮的点击事件。当点击时,调用上面定义的 qa_chain_self_answer 函数,并传入用户的消息和聊天历史记录,然后更新文本框和聊天机器人组件。db_wo_his_btn.click(model_center.qa_chain_self_answer, inputs=[msg, chatbot], outputs=[msg, chatbot])gr.Markdown("""提醒:<br>1. 初始化数据库时间可能较长,请耐心等待。2. 使用中如果出现异常,将会在文本输入框进行展示,请不要惊慌。 <br>""")
gr.close_all()
# 直接启动
demo.launch()

6.大作业

​ github上找了一些前端面试题作为向量库。

创建向量数据库

# 首先导入所需第三方库
from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from tqdm import tqdm
import os# 获取文件路径函数
def get_files(dir_path):# args:dir_path,目标文件夹路径file_list = []for filepath, dirnames, filenames in os.walk(dir_path):# os.walk 函数将递归遍历指定文件夹for filename in filenames:# 通过后缀名判断文件类型是否满足要求if filename.endswith(".md"):# 如果满足要求,将其绝对路径加入到结果列表file_list.append(os.path.join(filepath, filename))elif filename.endswith(".txt"):file_list.append(os.path.join(filepath, filename))elif filename.endswith(".pdf"):file_list.append(os.path.join(filepath, filename))return file_list# 加载文件函数
def get_text(dir_path):# args:dir_path,目标文件夹路径# 首先调用上文定义的函数得到目标文件路径列表file_lst = get_files(dir_path)# docs 存放加载之后的纯文本对象docs = []# 遍历所有目标文件for one_file in tqdm(file_lst):file_type = one_file.split('.')[-1]if file_type == 'md':loader = UnstructuredMarkdownLoader(one_file)elif file_type == 'txt':loader = UnstructuredFileLoader(one_file)elif file_type == 'pdf':loader = PyPDFLoader(one_file)else:# 如果是不符合条件的文件,直接跳过continuedocs.extend(loader.load())return docs# 目标文件夹
tar_dir = ["/root/homework3/data/vue"
]# 加载目标文件
docs = []
for dir_path in tar_dir:docs.extend(get_text(dir_path))# 对文本进行分块
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
split_docs = text_splitter.split_documents(docs)# 加载开源词向量模型
embeddings = HuggingFaceEmbeddings(model_name="/root/data/model/sentence-transformer")# 构建向量数据库
# 定义持久化路径
persist_directory = '/root/homework3/data/db/'
# 加载数据库
vectordb = Chroma.from_documents(documents=split_docs,embedding=embeddings,persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
)
# 将加载的向量数据库持久化到磁盘上
vectordb.persist()

然后将web_demo.py中的数据库path修改为我们新的数据库位置

image-20240213164247996

image-20240213164255688

有些敏感过头了好像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/691509.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker安装一系列镜像

启动docker systemctl start docker docker 启动已经停止的容器 docker start idOrName PS&#xff1a;idOrName为容器的id或者名称 1、安装mysql镜像 拉取mysql5.7的镜像 docker pull mysql:5.7 查看镜像 docker images 启动mysql #启动mysql docker run --name mysql…

云呐电网智能运维包含哪些?智能运维都有哪些框架

电网智能运维是一个复杂的系统&#xff0c;包括多种技术和方法&#xff0c;为提升电力系统的效率和稳定性。以下是你提出的问题的实际答案: 网络智能运维的核心技术与应用&#xff1a; 故障检测&#xff1a;根据实时监测和数据分析&#xff0c;对电网中的故障进行快速、准确的…

LabVIEW读取excel日期

LabVIEW读取excel日期 | Excel数据表格中有日期列和时间列&#xff0c;如下表所示&#xff1a; 通过LabVIEW直接读取Excel表格数据&#xff0c;读出的日期列和时间列数据与原始表格不一致&#xff0c;直接读出来的数据如下表所示&#xff1a; 日期、时间列数据异常 问题产生原因…

VBA:批量复制sheet内指定内容

VBA. 批量复制sheet内指定内容 背景&#xff1a;一个excel内有包含0-18序号的Sheet&#xff0c;需要将1-18的sheet内包含标准差的行复制到sheet”0“中。 方法&#xff1a; 从1-18遍历sheet&#xff0c;找到单元格值为”标准差“的行&#xff0c;然后&#xff08;仅复制值&a…

Linux下多核CPU指定程序运行的核

设置程序在指定CPU核心运行 一、如何查看程序运行的CPU信息 1.1 查看当前系统CPU有几个核心 查看CPU核心数量&#xff1a;lscpu 1.2 查看程序的PID ps aux|grep cpu_test1.3 查看程序可运行的CPU taskset -c -p pid1.4 设置程序在指定核心上运行 1.4.1 通过运行时的参数设…

[工具探索]VSCode介绍和进阶使用

相比较GoLand、PhpStorm、PyCharm、WebStorm的重量级内存占用&#xff0c;从Windows系统来&#xff0c;各种卡死&#xff0c;换到MacOS倒不会卡死&#xff0c;但是内存占用太多&#xff0c;影响体验&#xff0c;决定换到VSCode。当然这个过程需要适应过渡期&#xff0c;旧伙计都…

电脑文件误删除如何恢复?2024最新三种恢复方法

我们在使用电脑的过程中&#xff0c;随着时间的不断推移&#xff0c;渐渐的我们会发现C盘内存空间不足了。这是因为我们很多文件都默认存储在C盘&#xff0c;所以导致C盘空间不足&#xff0c;电脑运行越来越慢。那么电脑哪些文件可以删除&#xff0c;电脑删除的东西怎么恢复&am…

There will be “7“ later: Interpretation of next-generation Wi-Fi technology

With the Wi-Fi Alliance announcing the launch of Wi-Fi 7-related certifications, we can also start talking about the new successor to Wi-Fi 6 three years after its launch. What is Wi-Fi 7? What benefits does it bring? These questions about Wi-Fi 7 will b…

Active Directory 的密码管理策略

员工使用的密码可以决定或破坏组织中的数据安全性&#xff0c;但是&#xff0c;知道员工通常不遵循良好的密码卫生习惯也就不足为奇了。从在本机工具&#xff08;如 Windows Active Directory 组策略&#xff09;中设置弱密码和通用密码到宽松的密码策略规则&#xff0c;有几个…

钉钉小程序 没有调用该接口的权限

钉钉小程序 没有调用该接口的权限 problem 钉钉官方自带免登陆小程序 后端接口报错 {"errcode":60011,"errmsg":"没有调用该接口的权限&#xff0c;接口权限申请参考&#xff1a;https://open.dingtalk.com/document/orgapp-server/add-api-permiss…

【C++】---static成员(附OJ题)

一、静态成员变量 1.概念&#xff1a; 声明为static的类成员称为类的静态成员&#xff0c;静态成员分为两种&#xff1a; &#xff08;1&#xff09;static修饰的成员变量&#xff1a;静态成员变量 &#xff08;2&#xff09;static修饰的成员函数&#xff1a;静态成员函数 …

【云原生系列之kubernetes】--Ingress使用

service的缺点&#xff1a; 不支持基于URL等机制对HTTP/HTTPS协议进行高级路由、超时、重试、基于流量的灰度等高级流量治理机制难以将多个service流量统一管理 1.1ingress的概念 ingress是k8s中的一个对象&#xff0c;作用是如何将请求转发到service的规则ingress controlle…

Code Composer Studio (CCS) - 文件比较

Code Composer Studio [CCS] - 文件比较 References 鼠标单击选中一个文件&#xff0c;再同时按住 Ctrl 鼠标左键来选中第二个文件&#xff0c;在其中一个文件上鼠标右击选择 Compare With -> Each Other. References [1] Yongqiang Cheng, https://yongqiang.blog.csdn.n…

UE5 C++ 静态加载资源和类

一.上篇文章创建组件并绑定之后 在Actor中加载初始化了组件&#xff0c;现在在组件中赋值。使用static ConstructorHelpers::FObjectFinder<T>TempName(TEXT("Copy Reference"))&#xff1b;再用TempName.Object //静态加载资源static ConstructorHelpers::FOb…

戴尔Dell R740服务器开机冒烟亮黄灯故障维修

今天分享的是一台过保修期的DELL PowerEdge R740服务器开机冒烟的维修案例。先上图&#xff1a; 接到用户报修后工程师立即响应&#xff0c;由于用户也是刚开工第一天服务器开机就出现了这种祥龙吐雾的祥兆&#xff0c;导致工厂业务流程无法正常使用&#xff0c;这台机器在东莞…

【plt.hist绘制直方图】:从入门到精通,只需一篇文章!【Matplotlib可视化】

【&#x1f4ca;plt.pie绘制直方图】&#xff1a;从入门到精通&#xff0c;只需一篇文章&#xff01;【Matplotlib可视化】&#xff01; 利用Matplotlib进行数据可视化示例 &#x1f335;文章目录&#x1f335; &#x1f4c8; 一、引言&#x1f50d; 二、plt.hist()函数基础&am…

flink state原理,TTL,状态后端,数据倾斜一文全

flink state原理 1. 状态、状态后端、Checkpoint 三者之间的区别及关系&#xff1f;2 算子状态与键控状态的区别2.1 算子状态2.2 键控状态2.3 算子状态api2.4 键控状态api 3 HashMapStateBackend 状态后端4 EmBeddedRocksDbStateBackend 状态后端5 状态数据结构介绍5.1 算子状态…

辽宁博学优晨教育科技有限公司视频剪辑培训专业之选

随着数字时代的到来&#xff0c;视频剪辑技术已成为各行各业不可或缺的一项技能。为了满足市场需求&#xff0c;辽宁博学优晨教育科技有限公司&#xff08;以下简称“博学优晨”&#xff09;推出了专业的视频剪辑培训课程&#xff0c;旨在为广大学员提供系统、高效的学习机会。…

Docker vs VM

关于应用程序的托管和开发&#xff0c;市场中的技术和产品琳琅满目。对比 Docker 和 VM&#xff0c;如何取舍&#xff1f;这主要由自身团队的因素决定&#xff0c;在选择 Docker 的情况下&#xff0c;你需要保证程序可在容器和虚拟机中运行。另外&#xff0c;成本和易用性也是重…

【视频编解码】M-JPEG压缩、H.264压缩 对比

简介 参考这篇文章&#xff1a;https://blog.csdn.net/qq_41248872/article/details/83590337 写的比较好&#xff0c;这里就不赘述了。 我们在视频传输的时候&#xff0c;需要压缩&#xff0c;常见的压缩包括: jpeg 压缩h264 压缩 当然使用最多的还是 264, 毕竟他的压缩比…