C++项目 – 高并发内存池(五)释放内存过程
文章目录
- C++项目 -- 高并发内存池(五)释放内存过程
- 一、Thread Cache释放内存
- 1.完善FreeList功能
- 2.Thread Cache释放内存
- 二、Central Cache释放内存
- 三、Page Cache释放内存
- 四、释放内存过程联调
- 五、代码实现
一、Thread Cache释放内存
1.完善FreeList功能
- 当一块内存块释放时,我们将其归还给对应的Thread Cache的freeList,当前freeList的长度如果达到了一定值,我们就可以将一段list归还给central cache管理,以减少内存碎片,因此FreeList类需要增加统计链表长度的成员及接口;
PopRange
用于批量从FreeList中取走size个对象;
//自由链表类,用于管理切分好的小内存块
class FreeList {
public:void Push(void* obj) {assert(obj);//头插NextObj(obj) = _freeList;_freeList = obj;_size++;}//范围插入void PushRange(void* start, void* end, size_t size) {assert(start);assert(end);NextObj(end) = _freeList;_freeList = start;_size += size;}void* Pop() {assert(_freeList);//头删void* obj = _freeList;_freeList = NextObj(obj);_size--;return obj;}//批量取走对象void PopRange(void* start, void* end, size_t size) {assert(size >= _size);start = _freeList;end = start;for (size_t i = 0; i < size - 1; i++) {end = NextObj(end);}_freeList = NextObj(end);NextObj(end) = nullptr;_size -= size;}bool Empty() {return _freeList == nullptr;}//用于实现thread cache从central cache获取内存的慢开始算法size_t& MaxSize() {return _maxSize;}size_t Size() {return _size;}
private:void* _freeList = nullptr;size_t _maxSize = 1;size_t _size = 0;
};
2.Thread Cache释放内存
Deallocate
函数用于将释放的内存块插入到对应的Thread Cache的自由链表中,如果自由链表的长度超过了一次批量申请内存块的数量,就调用ListTooLong
函数归还一段链表给Central Cache;
void ThreadCache::Deallocate(void* obj, size_t size) {assert(obj);assert(size <= MAX_BYTES);//找该对象对应的freeList的桶,直接插入size_t index = SizeClass::Index(size);_freeLists[index].Push(obj);//当链表的长度大于一次批量申请的内存块的数量时,就归还一段list给central cacheif (_freeLists[index].Size() > _freeLists[index].MaxSize()) {ListTooLong(_freeLists[index], size);}
}
ListTooLong
函数用于从当前自由链表中取出MaxSize
长度的链表,归还到CentralCache的对应Span中:
void ThreadCache::ListTooLong(FreeList& list, size_t size) {void* start = nullptr;void* end = nullptr;//从list中取出MaxSize长度的链表list.PopRange(start, end, list.MaxSize());//归还给CentralCache的对应spanCentralCache::GetInstance()->ReleaseListToSpan(start, size);
}
二、Central Cache释放内存
- 从central cache获取内存块到thread cache的时候,要更新span的
_useCount
参数;
//从CentralCache获取一定数量的内存对象给ThreadCache
size_t CentralCache::FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size) {//先根据对象size获取对应的spanList下标size_t index = SizeClass::Index(size);//每个线程访问spanList时需要加锁_spanLists[index]._mtx.lock();//获取非空的spanSpan* span = GetOneSpan(_spanLists[index], size);assert(span);assert(span->_freeList);//从span中获取batchNum个对象,若不够,就有多少拿多少start = span->_freeList;end = start;size_t i = 0;size_t actualNum = 1; // 实际拿到的对象数量while (i < batchNum - 1 && NextObj(end) != nullptr) {end = NextObj(end);actualNum++;i++;}//在span中去掉这一段对象span->_freeList = NextObj(end);NextObj(end) = nullptr;//更新span->_useCount参数span->_useCount += actualNum;_spanLists[index]._mtx.unlock();return actualNum;
}
- 在Page Cache中加入页号与Span的映射关系;
- 在central cache向page cache申请span的时候,申请下了span就立即将该span的
_isUse
属性设为true,避免后面page cache合并span的时候出现线程安全问题;
Span* CentralCache::GetOneSpan(SpanList& spanList, size_t size) {//先检查该SpanList有没有未分配的SpanSpan* it = spanList.Begin();while (it != spanList.End()) {if (it->_freeList != nullptr) {return it;}else {it = it->_next;}}//先把central cache 的桶锁解掉,这样如果其他线程释放对象回来,就不会被阻塞spanList._mtx.unlock();//SpanList中没有空闲的Span,需要向page cache申请//在此处加上page cache的全局锁,NewSpan的所有操作都是加锁进行的PageCache::GetInstance()->_pageMtx.lock();Span* span = PageCache::GetInstance()->NewSpan(SizeClass::NumMovePage(size));//更新_isUse属性span->_isUse = true;PageCache::GetInstance()->_pageMtx.unlock();//从page cache获取到了新的span,需要进行切分//无需在此加上桶锁,因为该span还没有放到spanList中,其他线程访问不到//计算span大块内存的起始地址和大块内存的大小(字节数)char* start = (char*)(span->_pageID << PAGE_SHIFT);size_t bytes = span->_n << PAGE_SHIFT;char* end = start + bytes;//把大块内存切成自由链表链接起来//先切一块下来做头,方便尾插span->_freeList = start;start += size;void* tail = span->_freeList;while (start < end) {NextObj(tail) = start;tail = start;start += size;}//在span挂载到spanList之前加上桶锁spanList._mtx.lock();spanList.PushFront(span);return span;
}
ReleaseListToSpan
函数用于将归还回来的内存块链表挂载回span;- 判断内存块属于哪一页,页的起始地址除以8k为页号,两页之间的任意地址除以8k也是该地址所属的页号;
- 查找内存块对象对应的span,头插到对应的span中;
- 更新span的useCount,如果useCount变为0,就说明所有内存块都已经归还,就可以将该span归还给page cache;
- 归还page cache的时候也涉及解除central cache的桶锁,因为这之后的操作与该桶无关了,其他的线程也有可能在这个桶申请和释放内存,因此需要解除桶锁;
- page cache的锁直接加在
ReleaseSpanToPageCache
之外;
- 判断内存块属于哪一页,页的起始地址除以8k为页号,两页之间的任意地址除以8k也是该地址所属的页号;
void CentralCache::ReleaseListToSpan(void* start, size_t byte_size) {size_t index = SizeClass::Index(byte_size);_spanLists[index]._mtx.lock();//该段list的尾部指针已经置空,遍历到空指针就停止while (start) {//将内存块对象挂载到对应的span上void* next = NextObj(start);//获取该对象对应的spanSpan* span = PageCache::GetInstance()->MapObjectToSpan(start);NextObj(start) = span->_freeList;span->_freeList = start;//更新_useCountspan->_useCount--;//说明该span的小块内存都回收了//这个span就可以回收给page cache,由page cache去做前后页的合并if (span->_useCount == 0) {_spanLists[index].Erase(span);span->_prev = nullptr;span->_next = nullptr;span->_freeList = nullptr;//释放span给page cache的时候,使用page cache的锁就可以了//将桶锁先解除,方便其他线程在该桶上申请和释放内存_spanLists[index]._mtx.unlock();PageCache::GetInstance()->_pageMtx.lock();PageCache::GetInstance()->ReleaseSpanToPageCache(span);PageCache::GetInstance()->_pageMtx.unlock();_spanLists[index]._mtx.lock();}start = next;}_spanLists[index]._mtx.unlock();
}
三、Page Cache释放内存
- PageCache类中增加一个哈希表
_idSpanMap
成员,用于存储页号到Span的映射关系;
在NewSpan
函数切分Span的时候,将切分后的两个Span的页号与Span的映射关系都加入到_idSpanMap
中;
MapObjectToSpan
函数用于获取对象到span的映射关系;
Span* PageCache::NewSpan(size_t k)
{assert(k > 0 && k < NPAGES);//先检查第k个桶里面有没有spanif (!_spanLists[k].Empty()) {//有就返回return _spanLists[k].PopFront();}//没有就需要检查后面的桶有没有更大的span,如果有可以拆分for (size_t i = k + 1; i < NPAGES; i++) {if (!_spanLists[i].Empty()) {Span* nspan = _spanLists[i].PopFront();Span* kspan = new Span;//在nspan头部且下一个k页的span//kspan返回//nspan剩下的部分挂载到相应的桶上kspan->_pageID = nspan->_pageID;kspan->_n = k;nspan->_pageID += k;nspan->_n -= k;_spanLists[nspan->_n].PushFront(nspan);//存储nspan的首尾页号与Span的关系,方便page cache回收内存时进行合并查找_idSpanMap[nspan->_pageID] = nspan;_idSpanMap[nspan->_pageID + nspan->_n - 1] = nspan;//存储kspan每一页的页号与span的映射,方便central cache回收小块内存时,查找对应的spanfor (PAGE_ID i = 0; i < kspan->_n; i++) {_idSpanMap[kspan->_pageID + i] = kspan;}return kspan;}}//走到这里说明没有更大的span了,需要向堆申请一个128页的大块内存Span* bigSpan = new Span;void* ptr = SystemAlloc(NPAGES - 1);bigSpan->_pageID = (PAGE_ID)ptr >> PAGE_SHIFT;bigSpan->_n = NPAGES - 1;_spanLists[NPAGES - 1].PushFront(bigSpan);//此时需要将_spanLists中的128页的内存切分,递归调用一下return NewSpan(k);
}
Span* PageCache::MapObjectToSpan(void* obj) {PAGE_ID id = ((PAGE_ID)obj >> PAGE_SHIFT);auto ret = _idSpanMap.find(id);if (ret != _idSpanMap.end()) {return ret->second;}else {//应该是一定能够获取到的//如果获取不到就是出现了问题assert(false);return nullptr;}
}
ReleaseSpanToPageCache
函数用于释放空闲span回到page cache,并合并相邻的span;- 通过
_idSpanMap
获取页号与span的映射关系,将处于空闲状态,并且页号相邻的span合并成更大的span,这样可以减少内存碎片; - 使用span的_useCount属性来判断span是否被使用会造成线程安全问题,因为一个span被分到central cache但是好没有被切分时,他的_useCount依然是0;
- 因此需要使用_isUse属性来判断,在span被分给central cache后,就将_isUse置为true;
- 不断地向前向后合并;
- 通过
void PageCache::ReleaseSpanToPageCache(Span* span) {//对span前后的相邻页进行合并,缓解内存碎片的问题//向前合并while (1) {//前一页的idPAGE_ID prevId = span->_pageID - 1;//从map中寻找页号与span的映射auto ret = _idSpanMap.find(prevId);//前面的页号没有,不合并if (ret == _idSpanMap.end()) {break;}//前面相邻页的span在使用,不合并Span* prevSpan = ret->second;if (prevSpan->_isUse == true) {break;}//合并超出128页的span没法管理,不合并if (prevSpan->_n + span->_n > NPAGES - 1) {break;}//合并前面的spanspan->_pageID = prevSpan->_pageID;span->_n += prevSpan->_n;delete prevSpan;}//向后合并while (1) {PAGE_ID nextId = span->_pageID + span->_n;auto ret = _idSpanMap.find(nextId);if (ret == _idSpanMap.end()) {break;}Span* nextSpan = ret->second;if (nextSpan->_isUse == true) {break;}if (nextSpan->_n + span->_n > NPAGES - 1) {break;}span->_n += nextSpan->_n;_spanLists[nextSpan->_n].Erase(nextSpan);delete nextSpan;}//将合并好的span挂载到对应的哈希桶,更新isUse_spanLists[span->_n].PushFront(span);span->_isUse = true;_idSpanMap[span->_pageID] = span;_idSpanMap[span->_pageID + span->_n - 1] = span;
}
四、释放内存过程联调
void TestConcurrentAlloc1() {void* p1 = ConcurrentAlloc(6);void* p2 = ConcurrentAlloc(8);void* p3 = ConcurrentAlloc(1);void* p4 = ConcurrentAlloc(7);void* p5 = ConcurrentAlloc(8);void* p6 = ConcurrentAlloc(7);void* p7 = ConcurrentAlloc(8);cout << p1 << endl;cout << p2 << endl;cout << p3 << endl;cout << p4 << endl;cout << p5 << endl;cout << p6 << endl;cout << p7 << endl;ConcurrentFree(p1, 6);ConcurrentFree(p2, 8);ConcurrentFree(p3, 1);ConcurrentFree(p4, 7);ConcurrentFree(p5, 8);ConcurrentFree(p6, 7);ConcurrentFree(p7, 8);
}
- 能最终释放内存,并合并成128页的大块span
多线程测试
void MultiThreadAlloc1() {std::vector<void*> v;for (int i = 0; i < 7; i++) {void* ptr = ConcurrentAlloc(5);v.push_back(ptr);}for (auto e : v) {ConcurrentFree(e, 5);}
}void MultiThreadAlloc2() {std::vector<void*> v;for (int i = 0; i < 7; i++) {void* ptr = ConcurrentAlloc(16);v.push_back(ptr);}for (auto e : v) {ConcurrentFree(e, 16);}
}void TestMultiThread() {std::thread t1(Alloc1);std::thread t2(Alloc2);t1.join();t2.join();
}
- 多线程联调,并行监视
五、代码实现
Common.h
#pragma once
//公共头文件#include <iostream>
#include <vector>
#include <assert.h>
#include <thread>
#include <mutex>
#include <algorithm>
#include <unordered_map>
using std::cout;
using std::endl;
using std::vector;static const size_t MAX_BYTES = 256 * 1024; //ThreadCache能分配对象的最大字节数
static const size_t NFREELIST = 208; //central cache 最大的哈希桶数量
static const size_t NPAGES = 129; //page cache 哈希桶的数量
static const size_t PAGE_SHIFT = 13; //页与字节的转换#ifdef _WIN32#include<windows.h>
#else
//linux
#endif#ifdef _WIN64typedef unsigned long long PAGE_ID;
#elif _WIN32typedef size_t PAGE_ID;
#elif//linux#endif//直接去堆上申请空间
inline static void* SystemAlloc(size_t kpage) {
#ifdef _WIN32void* ptr = VirtualAlloc(0, kpage << 13, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
#else#endif // _WIN32if (ptr == nullptr) {throw std::bad_alloc();}return ptr;
}// 访问obj的前4 / 8字节地址空间
static void*& NextObj(void* obj) {return *(void**)obj;
}//自由链表类,用于管理切分好的小内存块
class FreeList {
public:void Push(void* obj) {assert(obj);//头插NextObj(obj) = _freeList;_freeList = obj;_size++;}//范围插入void PushRange(void* start, void* end, size_t size) {assert(start);assert(end);NextObj(end) = _freeList;_freeList = start;_size += size;}void* Pop() {assert(_freeList);//头删void* obj = _freeList;_freeList = NextObj(obj);_size--;return obj;}//批量取走对象void PopRange(void*& start, void* end, size_t size) {assert(_size >= size); /// ???????? _size >= sizestart = _freeList;end = start;for (size_t i = 0; i < size - 1; i++) {end = NextObj(end);}_freeList = NextObj(end);NextObj(end) = nullptr;_size -= size;}bool Empty() {return _freeList == nullptr;}//用于实现thread cache从central cache获取内存的慢开始算法size_t& MaxSize() {return _maxSize;}size_t Size() {return _size;}
private:void* _freeList = nullptr;size_t _maxSize = 1;size_t _size = 0;
};// 管理对齐和哈希映射规则的类
class SizeClass {
public://对齐规则// 整体控制在最多10%左右的内碎片浪费// [1,128] 8byte对齐 freelist[0,16)// [128+1,1024] 16byte对齐 freelist[16,72)// [1024+1,8*1024] 128byte对齐 freelist[72,128)// [8*1024+1,64*1024] 1024byte对齐 freelist[128,184)// [64*1024+1,256*1024] 8*1024byte对齐 freelist[184,208)//RoundUp的子函数,根据对象大小和对齐数,返回对象对齐后的大小static inline size_t _RoundUp(size_t size, size_t align) {//if (size % align == 0) {// return size;//}//else {// return (size / align + 1) * align;//}//使用位运算能够得到一样的结果,但是位运算的效率很高return ((size + align - 1) & ~(align - 1));}//计算当前对象size字节对齐之后对应的sizestatic inline size_t RoundUp(size_t size) {assert(size <= MAX_BYTES);if (size <= 128) {//8字节对齐return _RoundUp(size, 8);}else if (size <= 1024) {//16字节对齐return _RoundUp(size, 16);}else if (size <= 8 * 1024) {//128字节对齐return _RoundUp(size, 128);}else if (size <= 64 * 1024) {//1024字节对齐return _RoundUp(size, 1024);}else if (size <= 256 * 1024) {//8KB字节对齐return _RoundUp(size, 8 * 1024);}else {assert(false);}return -1;}//Index的子函数,用于计算映射的哈希桶下标static inline size_t _Index(size_t size, size_t alignShift) {//if (size % align == 0) {// return size / align - 1;//}//else {// return size / align;//}//使用位运算能够得到一样的结果,但是位运算的效率很高//使用位运算需要将输入参数由对齐数改为对齐数是2的几次幂、return ((size + (1 << alignShift) - 1) >> alignShift) - 1;}//计算对象size映射到哪一个哈希桶(freelist)static inline size_t Index(size_t size) {assert(size <= MAX_BYTES);//每个区间有多少个哈希桶static int groupArray[4] = { 16, 56, 56, 56 };if (size <= 128) {return _Index(size, 3);}else if (size <= 1024) {//由于前128字节不是16字节对齐,因此需要减去该部分,单独计算16字节对齐的下标//再在最终结果加上全部的8字节对齐哈希桶个数return _Index(size - 128, 4) + groupArray[0];}else if (size <= 8 * 1024) {return _Index(size - 1024, 7) + groupArray[0] + groupArray[1];}else if (size <= 64 * 1024) {return _Index(size - 8 * 1024, 10) + groupArray[0] + groupArray[1] + groupArray[2];}else if (size <= 256 * 1024) {return _Index(size - 64 * 1024, 13) + groupArray[0] + groupArray[1] + groupArray[2] + groupArray[3];}else {assert(false);}return -1;}//thread cache一次从central cache中获取多少内存块static size_t NumMoveSize(size_t size) {//一次获取的内存块由对象的大小来决定assert(size > 0);//将获取的数量控制在[2, 512]size_t num = MAX_BYTES / size;if (num < 2) {num = 2;}if (num > 512) {num = 512;}return num;}//计算central cache一次向page cache获取多少页的spanstatic size_t NumMovePage(size_t size) {assert(size > 0);//先计算该对象一次申请内存块的上限值size_t num = NumMoveSize(size);//计算上限的空间大小size_t npage = num * size;//转换成page单位npage >>= PAGE_SHIFT;if (npage == 0) {npage = 1;}return npage;}
};struct Span
{PAGE_ID _pageID = 0; // 大块内存起始页的页号size_t _n = 0; // 页的数量Span* _next = nullptr; // 双向链表的结构Span* _prev = nullptr;size_t _objSize = 0; // 切好的小对象的大小size_t _useCount = 0; // 切好小块内存,被分配给thread cache的计数void* _freeList = nullptr; // 切好的小块内存的自由链表bool _isUse = false; // 是否在被使用
};class SpanList {
public:SpanList() {_head = new Span;_head->_next = _head;_head->_prev = _head;}void Insert(Span* pos, Span* newSapn) {assert(pos);assert(newSapn);Span* prev = pos->_prev;prev->_next = newSapn;newSapn->_prev = prev;newSapn->_next = pos;pos->_prev = newSapn;}void Erase(Span* pos) {assert(pos);assert(pos != _head);//不用释放空间Span* prev = pos->_prev;Span* next = pos->_next;prev->_next = next;next->_prev = prev;}Span* Begin() {return _head->_next;}Span* End() {return _head;}bool Empty() {return _head->_next == _head;}void PushFront(Span* newSapn) {Insert(Begin(), newSapn);}Span* PopFront() {Span* front = _head->_next;Erase(front);return front;}private:Span* _head; //头节点
public:std::mutex _mtx; //桶锁
};
ThreadCache.h
#pragma once
#include "Common.h"class ThreadCache {
public://申请和释放对象内存void* Allocate(size_t size);void Deallocate(void* obj, size_t size);//从中心缓存获取对象void* FetchFromCentralCache(size_t index, size_t alignSize);//自由链表过长时,回收一段链表到中心缓存void ListTooLong(FreeList& list, size_t size);private:FreeList _freeLists[NFREELIST];
};//声明_declspec(thread)后,会为每一个线程创建一个单独的拷贝
//使用_declspec(thread)声明了ThreadCache*指针变量,则该指针在该线程中会创建一份单独的拷贝
//pTLSThreadCache指向的对象在本线程内是能够全局访问的,但是无法被其他线程访问到,这就做到了多线程情景下的无锁访问
static _declspec(thread) ThreadCache* pTLSThreadCache = nullptr;
ThreadCache.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include "ThreadCache.h"
#include "CentralCache.h"void* ThreadCache::Allocate(size_t size) {assert(size <= MAX_BYTES);//获取对齐后的大小及对应的哈希桶下标size_t alignSize = SizeClass::RoundUp(size);size_t index = SizeClass::Index(size);if (!_freeLists[index].Empty()) {//若对应的freeList桶不为空,直接pop一个内存块给该对象return _freeLists[index].Pop();}else {//否则需要从CentralCache获取内存空间return ThreadCache::FetchFromCentralCache(index, alignSize);}
}void ThreadCache::Deallocate(void* obj, size_t size) {assert(obj);assert(size <= MAX_BYTES);//找该对象对应的freeList的桶,直接插入size_t index = SizeClass::Index(size);_freeLists[index].Push(obj);//当链表的长度大于一次批量申请的内存块的数量时,就归还一段list给central cacheif (_freeLists[index].Size() >= _freeLists[index].MaxSize()) {ListTooLong(_freeLists[index], size);}
}void ThreadCache::ListTooLong(FreeList& list, size_t size) {void* start = nullptr;void* end = nullptr;//从list中取出MaxSize长度的链表list.PopRange(start, end, list.MaxSize());//归还给CentralCache的对应spanCentralCache::GetInstance()->ReleaseListToSpan(start, size);
}void* ThreadCache::FetchFromCentralCache(size_t index, size_t alignSize) {//慢开始算法//计算当前从Central Cache中获取内存块的最大数量size_t batchNum = min(_freeLists[index].MaxSize(), SizeClass::NumMoveSize(alignSize));//如果MaxSize未达上限,就将MaxSize + 1if (batchNum == _freeLists[index].MaxSize()) {_freeLists[index].MaxSize() += 1;}void* start = nullptr;void* end = nullptr;size_t actualNum = CentralCache::GetInstance()->FetchRangeObj(start, end, batchNum, alignSize);assert(actualNum >= 1);if (actualNum == 1) {//如果最终获取的数量为1,直接返回给对象assert(start == end);return start;}else {//如果最终获取的数量多于一个,则返回第一个给对象,剩下的插入freeList里_freeLists[index].PushRange(NextObj(start), end, actualNum - 1); // 批量插入//NextObj(start) = nullptr;return start;}
}
CentralCache.h
#pragma once
#include "Common.h"
#include "PageCache.h"//饿汉单例模式
class CentralCache {
public:static CentralCache* GetInstance() {return &_sInstance;}//从CentralCache获取一定数量的内存对象给ThreadCachesize_t FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size);//获取一个非空的SapnSpan* GetOneSpan(SpanList& spanList, size_t size);//归还一段list到对应的spanvoid ReleaseListToSpan(void* start, size_t byte_size);private:SpanList _spanLists[NFREELIST];//构造函数私有化CentralCache() {}//不生成默认拷贝构造CentralCache(const CentralCache&) = delete;static CentralCache _sInstance;
};
CentralCache.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include "CentralCache.h"//单例模式静态成员的定义
CentralCache CentralCache::_sInstance;//从CentralCache获取一定数量的内存对象给ThreadCache
size_t CentralCache::FetchRangeObj(void*& start, void*& end, size_t batchNum, size_t size) {//先根据对象size获取对应的spanList下标size_t index = SizeClass::Index(size);//每个线程访问spanList时需要加锁_spanLists[index]._mtx.lock();//获取非空的spanSpan* span = GetOneSpan(_spanLists[index], size);assert(span);assert(span->_freeList);//从span中获取batchNum个对象,若不够,就有多少拿多少start = span->_freeList;end = start;size_t i = 0;size_t actualNum = 1; // 实际拿到的对象数量while (i < batchNum - 1 && NextObj(end) != nullptr) {end = NextObj(end);actualNum++;i++;}//在span中去掉这一段对象span->_freeList = NextObj(end);NextObj(end) = nullptr;//更新span->_useCount参数span->_useCount += actualNum;_spanLists[index]._mtx.unlock();return actualNum;
}Span* CentralCache::GetOneSpan(SpanList& spanList, size_t size) {//先检查该SpanList有没有未分配的SpanSpan* it = spanList.Begin();while (it != spanList.End()) {if (it->_freeList != nullptr) {return it;}else {it = it->_next;}}//先把central cache 的桶锁解掉,这样如果其他线程释放对象回来,就不会被阻塞spanList._mtx.unlock();//SpanList中没有空闲的Span,需要向page cache申请//在此处加上page cache的全局锁,NewSpan的所有操作都是加锁进行的PageCache::GetInstance()->_pageMtx.lock();Span* span = PageCache::GetInstance()->NewSpan(SizeClass::NumMovePage(size));//更新_isUse属性span->_isUse = true;PageCache::GetInstance()->_pageMtx.unlock();//从page cache获取到了新的span,需要进行切分//无需在此加上桶锁,因为该span还没有放到spanList中,其他线程访问不到//计算span大块内存的起始地址和大块内存的大小(字节数)char* start = (char*)(span->_pageID << PAGE_SHIFT);size_t bytes = span->_n << PAGE_SHIFT;char* end = start + bytes;//把大块内存切成自由链表链接起来//先切一块下来做头,方便尾插span->_freeList = start;start += size;void* tail = span->_freeList;while (start < end) {NextObj(tail) = start;tail = start;start += size;}//在span挂载到spanList之前加上桶锁spanList._mtx.lock();spanList.PushFront(span);return span;
}void CentralCache::ReleaseListToSpan(void* start, size_t byte_size) {size_t index = SizeClass::Index(byte_size);_spanLists[index]._mtx.lock();//该段list的尾部指针已经置空,遍历到空指针就停止while (start) {//将内存块对象挂载到对应的span上void* next = NextObj(start);//获取该对象对应的spanSpan* span = PageCache::GetInstance()->MapObjectToSpan(start);NextObj(start) = span->_freeList;span->_freeList = start;//更新_useCountspan->_useCount--;//说明该span的小块内存都回收了//这个span就可以回收给page cache,由page cache去做前后页的合并if (span->_useCount == 0) {_spanLists[index].Erase(span);span->_prev = nullptr;span->_next = nullptr;span->_freeList = nullptr;//释放span给page cache的时候,使用page cache的锁就可以了//将桶锁先解除,方便其他线程在该桶上申请和释放内存_spanLists[index]._mtx.unlock();PageCache::GetInstance()->_pageMtx.lock();PageCache::GetInstance()->ReleaseSpanToPageCache(span);PageCache::GetInstance()->_pageMtx.unlock();_spanLists[index]._mtx.lock();}start = next;}_spanLists[index]._mtx.unlock();
}
PageCache.h
#pragma once
#include "Common.h"//单例模式
class PageCache {
public:static PageCache* GetInstance() {return &_sInstance;}std::mutex _pageMtx; //全局锁//获取一个k页的SpanSpan* NewSpan(size_t k);//获取对象到span的映射Span* MapObjectToSpan(void* obj);//释放空闲span回到page cache,并合并相邻的spanvoid ReleaseSpanToPageCache(Span* span);private:SpanList _spanLists[NPAGES];// 用于存储页号到Span的映射关系std::unordered_map<PAGE_ID, Span*> _idSpanMap;PageCache() {}PageCache(const PageCache&) = delete;static PageCache _sInstance;
};
PageCache.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include "PageCache.h"PageCache PageCache::_sInstance;Span* PageCache::NewSpan(size_t k)
{assert(k > 0 && k < NPAGES);//先检查第k个桶里面有没有spanif (!_spanLists[k].Empty()) {//有就返回return _spanLists[k].PopFront();}//没有就需要检查后面的桶有没有更大的span,如果有可以拆分for (size_t i = k + 1; i < NPAGES; i++) {if (!_spanLists[i].Empty()) {Span* nspan = _spanLists[i].PopFront();Span* kspan = new Span;//在nspan头部且下一个k页的span//kspan返回//nspan剩下的部分挂载到相应的桶上kspan->_pageID = nspan->_pageID;kspan->_n = k;nspan->_pageID += k;nspan->_n -= k;_spanLists[nspan->_n].PushFront(nspan);//存储nspan的首尾页号与Span的关系,方便page cache回收内存时进行合并查找_idSpanMap[nspan->_pageID] = nspan;_idSpanMap[nspan->_pageID + nspan->_n - 1] = nspan;//存储kspan每一页的页号与span的映射,方便central cache回收小块内存时,查找对应的spanfor (PAGE_ID i = 0; i < kspan->_n; i++) {_idSpanMap[kspan->_pageID + i] = kspan;}return kspan;}}//走到这里说明没有更大的span了,需要向堆申请一个128页的大块内存Span* bigSpan = new Span;void* ptr = SystemAlloc(NPAGES - 1);bigSpan->_pageID = (PAGE_ID)ptr >> PAGE_SHIFT;bigSpan->_n = NPAGES - 1;_spanLists[NPAGES - 1].PushFront(bigSpan);//此时需要将_spanLists中的128页的内存切分,递归调用一下return NewSpan(k);
}Span* PageCache::MapObjectToSpan(void* obj) {PAGE_ID id = ((PAGE_ID)obj >> PAGE_SHIFT);auto ret = _idSpanMap.find(id);if (ret != _idSpanMap.end()) {return ret->second;}else {//应该是一定能够获取到的//如果获取不到就是出现了问题assert(false);return nullptr;}
}void PageCache::ReleaseSpanToPageCache(Span* span) {//对span前后的相邻页进行合并,缓解内存碎片的问题//向前合并while (1) {//前一页的idPAGE_ID prevId = span->_pageID - 1;//从map中寻找页号与span的映射auto ret = _idSpanMap.find(prevId);//前面的页号没有,不合并if (ret == _idSpanMap.end()) {break;}//前面相邻页的span在使用,不合并Span* prevSpan = ret->second;if (prevSpan->_isUse == true) {break;}//合并超出128页的span没法管理,不合并if (prevSpan->_n + span->_n > NPAGES - 1) {break;}//合并前面的spanspan->_pageID = prevSpan->_pageID;span->_n += prevSpan->_n;delete prevSpan;}//向后合并while (1) {PAGE_ID nextId = span->_pageID + span->_n;auto ret = _idSpanMap.find(nextId);if (ret == _idSpanMap.end()) {break;}Span* nextSpan = ret->second;if (nextSpan->_isUse == true) {break;}if (nextSpan->_n + span->_n > NPAGES - 1) {break;}span->_n += nextSpan->_n;_spanLists[nextSpan->_n].Erase(nextSpan);delete nextSpan;}//将合并好的span挂载到对应的哈希桶,更新isUse_spanLists[span->_n].PushFront(span);span->_isUse = true;_idSpanMap[span->_pageID] = span;_idSpanMap[span->_pageID + span->_n - 1] = span;
}