如何探索和可视化用于图像中物体检测的 ML 数据

近年来,人们越来越认识到深入理解机器学习数据(ML-data)的必要性。不过,鉴于检测大型数据集往往需要耗费大量人力物力,它在计算机视觉(computer vision)领域的广泛应用,尚有待进一步开发。

通常,在物体检测(Object Detection,属于计算机视觉的一个子集)中,通过定义边界框,来定位图像中的物体,不仅可以识别物体,还能够了解物体的上下文、大小、以及与场景中其他元素的关系。同时,针对类的分布、物体大小的多样性、以及类出现的常见环境进行全面了解,也有助于在评估和调试中发现训练模型中的错误模式,从而更有针对性地选择额外的训练数据。

在实践中,我往往会采取如下方法:

  • 利用预训练的模型或基础模型的增强功能,为数据添加结构。例如:创建各种图像嵌入,并采用 t-SNE 或 UMAP 等降维技术。这些都可以生成相似性的地图,从而方便数据的浏览。此外,使用预先训练的模型进行检测,也可以方便提取上下文。
  • 使用能够将此类结构与原始数据的统计和审查功能整合在一起的可视化工具。

下面,我将介绍如何使用Renumics Spotlight,来创建交互式的对象检测可视化。作为示例,我将试着:

  • 为图像中的人物探测器建立可视化。
  • 可视化包括相似性地图、筛选器和统计数据,以便浏览数据。
  • 通过地面实况(Ground Truth)和 Ultralytics YOLOv8 的检测详细,查看每一张图像。

在Renumics Spotlight上的目标可视化。资料来源:作者创建

下载COCO数据集中的人物图像

首先,通过如下命令安装所需的软件包:


!pip install fiftyone ultralytics renumics-spotlight

利用FiftyOne的可恢复性下载功能,您可以从COCO 数据集处下载各种图像。通过简单的参数设置,我们即可下载包含一到多个人物的 1,000 幅图像。具体代码如下:


importpandasaspd
importnumpyasnp
importfiftyone.zooasfoz
# 从 COCO 数据集中下载 1000 张带人的图像
dataset = foz.load_zoo_dataset("coco-2017"、split="validation"、label_types=["detections"、],classes=["person"]、max_samples=1000、dataset_name="coco-2017-person-1k-validations"、
)

接着,您可以使用如下代码:


def xywh_too_xyxyn(bbox):"" convert from xywh to xyxyn format """return[bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]].
行 = []
fori, samplein enumerate(dataset):labels = [detection.labelfordetectioninsample.ground_truth.detections] bboxs = [...bboxs = [xywh_too_xyxyn(detection.bounding_box)fordetectioninsample.ground_truth.detections]bboxs_persons = [bboxforbbox, labelin zip(bboxs, labels)iflabel =="person"] 行。row.append([sample.filepath, labels, bboxs, bboxs_persons])df = pd.DataFrame(row, columns=["filepath","categories", "bboxs", "bboxs_persons"])
df["major_category"] = df["categories"].apply(lambdax:max(set(x) -set(["person"]), key=x.count)if len(set(x)) >1else "only person"。
)

将数据准备为 Pandas DataFrame,其中的列包括有:文件路径、边框盒(bounding boxe)类别、边框盒、边框盒包含的人物、以及主要类别(尽管有人物),以指定图像中人物的上下文:

然后,您可以通过 Spotlight 将其可视化:


From renumics import spotlight
spotlight.show(df)

您可以使用检查器视图中的添加视图按钮,并在边框视图中选择bboxs_persons和filepath,以显示带有图像的相应边框:

嵌入丰富的数据

要使得数据具有结构性,我们可以采用各种基础模型的图像嵌入(即:密集向量表示)。为此,您可以使用 UMAP 或 t-SNE 等进一步降维技术,将整个图像的Vision Transformer(ViT)嵌入应用到数据集的结构化,从而提供图像的二维相似性图。此外,您还可以使用预训练对象检测器的输出结果,按照包含对象的大小或数量,对数据进行分类,进而构建数据。由于 COCO 数据集已经提供了此方面的信息,因此我们完全可以直接使用它。

由于Spotlight 集成了对google/vit-base-patch16-224-in21k(ViT)模型和UMAP 的支持,因此当您使用文件路径创建各种嵌入时,它将会被自动应用:


spotlight.show(df, embed=["filepath"])

通过上述代码,Spotlight 将各种嵌入进行计算,并应用 UMAP 在相似性地图中显示结果。其中,不同的颜色代表了主要的类别。据此,您可以使用相似性地图来浏览数据:

预训练YOLOv8的结果

可用于快速识别物体的Ultralytics YOLOv8,是一套先进的物体检测模型。它专为快速图像处理而设计,适用于各种实时检测任务,特别是在被应用于大量数据时,用户无需浪费太多的等待时间。

为此,您可以首先加载预训练模型:


From ultralytics import YOLO
detection_model = YOLO("yolov8n.pt")

并执行各种检测:


detections = []
forfilepathindf["filepath"].tolist():detection = detection_model(filepath)[0]detections.append({"yolo_bboxs":[np.array(box.xyxyn.tolist())[0]forboxindetection.boxes]、"yolo_conf_persons": np.mean([np.array(box.conf.tolist())[0].forboxindetection.boxesifdetection.names[int(box.cls)] =="person"]), np.mean(]),"yolo_bboxs_persons":[np.array(box.xyxyn.tolist())[0]forboxindetection.boxesifdetection.names[int(box.cls)] =="person],"yolo_categories": np.array([np.array(detection.names[int(box.cls)])forboxindetection.boxes], "yolo_categories": np.array(),})
df_yolo = pd.DataFrame(detections)

在12gb的GeForce RTX 4070 Ti上,上述过程在不到20秒的时间内便可完成。接着,您可以将结果包含在DataFrame中,并使用Spotlight将其可视化。请参考如下代码:


df_merged = pd.concat([df, df_yolo], axis=1)
spotlight.show(df_merged, embed=["filepath"])

下一步,Spotlight将再次计算各种嵌入,并应用UMAP到相似度图中显示结果。不过这一次,您可以为检测到的对象选择模型的置信度,并使用相似度图在置信度较低的集群中导航检索。毕竟,鉴于这些图像的模型是不确定的,因此它们通常有一定的相似度。

当然,上述简短的分析也表明了,此类模型在如下场景中会遇到系统性的问题:

  • 由于列车体积庞大,站在车厢外的人显得非常渺小
  • 对于巴士和其他大型车辆而言,车内的人员几乎看不到
  • 有人站在飞机的外面
  • 食物的特写图片上有人的手或手指

您可以判断这些问题是否真的会影响您的人员检测目标,如果是的话,则应考虑使用额外的训练数据,来增强数据集,以优化模型在这些特定场景中的性能。

小结

综上所述,预训练模型和 Spotlight 等工具的使用,可以让我们的对象检测可视化过程变得更加容易,进而增强数据科学的工作流程。您可以使用自己的数据去尝试和体验上述代码。

原文标题:How to Explore and Visualize ML-Data for Object Detection in Images,作者:Markus Stoll

链接:https://itnext.io/how-to-explore-and-visualize-ml-data-for-object-detection-in-images-88e074f46361。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/689673.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

陇剑杯 2021刷题记录

题目位置:https://www.nssctf.cn/上有 陇剑杯 2021 1. 签到题题目描述分析答案小结 2. jwt问1析1答案小结 问2析2答案小结 问3析3答案 问4析4答案 问5析5答案 问6析6答案 3. webshell问1析1答案 问2析2答案 问3析3答案 1. 签到题 题目描述 此时正在进行的可能是_…

防止被恶意调用API接口

前言 在面试时,经常会被问一个问题:如何防止别人恶意刷接口? 这是一个非常有意思的问题,防范措施挺多的。今天这篇文章专门跟大家一起聊聊,希望对你会有所帮助。 1 防火墙 防火墙是网络安全中最基本的安全设备之一&…

Linux RabbitMQ 安装及卸载

一、安装 1、前景 RabbitMQ是用Erlang编写的,所以需要先安装Erlang的编译环境 注意 Erlang和RabbitMQ的版本是有一些版本匹配关系的,如果不匹配会导致RabbitMQ无法启动 2、安装Erlang # 下载 wget https://packages.erlang-solutions.com/erlang/r…

家中R4S软路由iStoreOS配置内网穿透服务实现远程访问公司电脑桌面

文章目录 简介一、配置远程桌面公网地址二、家中使用永久固定地址 访问公司电脑**具体操作方法是:** 简介 软路由是PC的硬件加上路由系统来实现路由器的功能,也可以说是使用软件达成路由功能的路由器。 使用软路由控制局域网内计算机的好处&#xff1a…

【日常聊聊】深度学习进度

🍎个人博客:个人主页 🏆个人专栏:日常聊聊 ⛳️ 功不唐捐,玉汝于成 目录 前言 正文 方向一:深度学习的基本原理和算法 方向二:深度学习的应用实例 方向三:深度学习的挑战和未…

JVM-JVM调优基础(理论)

申明:文章内容是本人学习极客时间课程所写,作为笔记进行记录,文字和图片基本来源于课程资料,在某些地方会插入一点自己的理解,未用于商业用途,侵删。 原资料地址:课程资料 JVM参数 标准参数 …

【正点原子STM32连载】 第五十章 手写识别实验 摘自【正点原子】APM32E103最小系统板使用指南

1)实验平台:正点原子APM32E103最小系统板 2)平台购买地址:https://detail.tmall.com/item.htm?id609294757420 3)全套实验源码手册视频下载地址: http://www.openedv.com/docs/boards/xiaoxitongban 第五…

lazada、速卖通卖家如何掌握自养号测评技巧打造高评价产品?

做跨境电商卖家都知道,国外的买家购物比较理性,也喜欢货比三家,所以店铺想要留住客户,就需要一些优质的产品来吸引他们。产品评价是卖家获取买家信任的重要途径,评价越高的产品,销量也就越好。 尤其是 Shop…

机器人常用传感器分类及一般性要求

机器人传感器的分类 传感技术是先进机器人的三大要素(感知、决策和动作)之一。根据用途不同,机器人传感器可以分为两大类:用于检测机器人自身状态的内部传感器和用于检测机器人相关环境参数的外部传感器。 内部传感器 内部传感…

CrossOver 24.0 让Mac可以运行Windows程序的工具

CrossOver 24.0最新版重点添加了对 DirectX 12 支持,从而在 Mac 上更好地模拟运行 Windows 游戏,开发者在 CrossOver 23 中可以调用 DirectX 12,在模拟游戏的过程中同时调用所有 GPU 核心,从而实现更优秀的渲染效果。 目前CrossOv…

CORROSION: 1

本机 192.168.223.128目标机 192.168.223.148 主机发现 nmap -sP 192.168.223.0/24 端口扫描 ​nmap -sV -p- -A 192.168.223.148开启了22 80 端口 看web,是个apache默认界面 扫目录 gobuster dir -u http://192.168.223.148 -x html,txt,php,bak --wordlist…

推送开权引导的技术内幕

人人都讨厌代码腐化,人人都在腐化代码!本文介绍app消息推送开权提醒能力的服务端实现,并说明如何通过手搓一个简易的流程引擎来实现横向的业务场景隔离,纵向的业务流程编排,从而灵活支持业务需求,抑制代码腐…

曲线生成 | 图解B样条曲线生成原理(基本概念与节点生成算法)

目录 0 专栏介绍1 什么是B样条曲线?2 基函数的de Boor递推式3 B样条曲线基本概念图解4 节点生成公式 0 专栏介绍 🔥附C/Python/Matlab全套代码🔥课程设计、毕业设计、创新竞赛必备!详细介绍全局规划(图搜索、采样法、智能算法等)…

java以及android类加载机制

类加载机制 一、Java类加载机制 java中,每一个类或者接口,在编译后,都会生成一个.class文件。 类加载机制指的是将这些.class文件中的二进制数据读入到内存中并对数据进行校验,解析和初始化。最终,每一个类都会在方…

OpenAI:Sora视频生成模型技术报告(中文)

概述 视频生成模型作为世界模拟器 我们探索视频数据生成模型的大规模训练。具体来说,我们在可变持续时间、分辨率和宽高比的视频和图像上联合训练文本条件扩散模型。我们利用transformer架构,在视频和图像潜在代码的时空补丁上运行。我们最大的模型Sor…

Springboot+vue的物流管理系统(有报告)。Javaee项目,springboot vue前后端分离项目

演示视频: Springbootvue的物流管理系统(有报告)。Javaee项目,springboot vue前后端分离项目 项目介绍: 本文设计了一个基于Springbootvue的前后端分离的物流管理系统,采用M(model)…

用163邮箱或者outlook接收国科大邮箱的邮件

使用如图下路径,创建一个新的密码,用于在163大师邮箱或者outlook登录即可 如果不行,则需要手动配置邮箱服务器 参考网址:中国科学院邮件系统帮助中心

人工智能_普通服务器CPU_安装清华开源人工智能AI大模型ChatGlm-6B_001---人工智能工作笔记0096

使用centos安装,注意安装之前,保证系统可以联网,然后执行yum update 先去更新一下系统,可以省掉很多麻烦 20240219_150031 这里我们使用centos系统吧,使用习惯了. ChatGlm首先需要一台个人计算机,或者服务器, 要的算力,训练最多,微调次之,推理需要算力最少 其实很多都支持C…

借助Aspose.BarCode条码控件,C# 中的文本转 QR 码生成器

二维码用于在较小的空间内存储大量数据。它们易于使用,可以通过智能手机或其他设备扫描来打开网站、观看视频或访问其他编码信息。在这篇博文中,我们将学习如何使用 C# 以编程方式生成基于文本的 QR 码。我们将提供分步指南和代码片段,帮助您…

嵌入式学习 Day20

一. 标准IO和文件IO的区别: 1.标准IO是库函数,是对系统调用的封装 2.文件IO是系统调用,是Linux内核中的函数接口 3.标准IO是有缓存的 4.文件IO是没有缓存的 IO: b c d - 标准IO l s p 二. 文件IO: 1.操作步骤: …