数学建模--粒子群算法(PSO)的Python实现

目录

 1.开篇提示

2.算法流程简介

3.算法核心代码

4.算法效果展示

 1.开篇提示

"""
开篇提示:
这篇文章是一篇学习文章,思路和参考来自:https://blog.csdn.net/weixin_42051846/article/details/128673427?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-4-128673427-blog-127750401.235^v38^pc_relevant_anti_t3&spm=1001.2101.3001.4242.3&utm_relevant_index=7
我基于自己的研究习惯对于该博主的文章进行了部分的学习和理解,并且对于代码进行了部分的修改,但总体还是参考他的思路和代码,在这里表示非常的感谢!
如果你想更了解PSO算法的内核,请您移步其博客,该博客给出了非常细致的分析。
代码修改处如下所示:
1.添加图片中的中文文字(matplotlib汉化问题)
2.fit_fun()书写简化
3.绘图更加清晰精炼
4.修改迭代函数部分中的计算量
"""

2.算法流程简介

"""
粒子群算法(PSO):是一种模拟鸟类觅食的智能优化算法
该算法的求解思路就是将待求解问题的每一个候选解视作鸟群中的每一个个体的具体位置信息,
每个候选解对应的最优适应度值作为每个个体在该位置处所能搜索到的食物的量,
通过个体间位置信息的相互交流来发现目标范围内的最优适应度值对应的最优候选解。
###重要概念
使用粒子群算法的时候我们需要及时去更新两个主要算式,也是PSO中最重要的两个公式
1.粒子的位置信息需要进行不断更新,对于每一个粒子的位置信息的计算更新公式:x(t+1)=x(t)+V(t+1)
2.对于粒子的下一次的移动更新距离,就涉及到了迭代的移动方向和距离,其更新公式如下所示:V(t+1)=wV(t)+c1r1(pbest(t)-x(t))+c2r2(gbest(t)-x(t))
有了以上的公式,我们处理PSO问题就变得比较简单了!
"""
"""
具体的算法流程如下:
1.基础参数的设置
2.初始化loc,v和种群适应度
3.标记最优个体数据
4.进行种群迭代运算
5.绘制可视化图片查看变化趋势
"""

本题中需要处理的问题是:(设置搜索空间维度为20,范围为[-10,10])

3.算法核心代码

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
#matplotlib支持中文
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
def fit_fun(x):y1=0for i in range(len(x)-1):y1=y1+100*((x[i+1]-x[i]*x[i])*(x[i+1]-x[i]*x[i]))+(x[i]-1)*(x[i]-1)y=abs(y1)return y
#1.基础参数的设置
range1=[-10,10]#取值范围
pso_number=300#进化种群的数量
iterators = 2000 #迭代次数最好大于500次以上,不然效果不明显   
w=0.8   #惯性因子
#两个加速系数
c1=2
c2=2
#种群个体的位置
loc=np.zeros((pso_number,20))
#种群个体的移动速度
v= np.zeros((pso_number, 20))
#种群的个体适应度值
fitness=np.zeros(pso_number)#2.初始化loc,v和种群适应度
for j in range(pso_number):loc[j] = np.random.uniform(low=-10, high=10,size=(1, 20))v[j] = np.zeros((1,20))fitness[j] = fit_fun(loc[j])
#3.标记最优个体数据
allpg,bestpg=loc[fitness.argmin()].copy(),fitness.min()#allpg,bestpg分别表示种群历史最优个体和适应度值
poppn,bestpn=loc.copy(),fitness.copy()#poppn,bestpn分别存储个体历史最优位置和适应度值
bestfitness=np.zeros(iterators)#bestfitness用于存储每次迭代时的种群历史最优适应度值
#4.进行种群迭代运算
#开始迭代
for i in range(iterators):print("此时为第",i+1,"次迭代:")for m in range(pso_number):r1 = np.random.rand()r2 = np.random.rand()#计算移动速度同时更新位置信息v[m]=w*v[m]+c1*r1*(poppn[m]-loc[m])+c2*r2*(allpg-loc[m])loc[m]=loc[m]+v[m]#确保更新后的位置在取值范围内loc[loc<range1[0]]=range1[0]loc[loc>range1[1]]=range1[1]#计算适应度值fitness[m] = fit_fun(loc[m])#更新个体历史最优适应度值if fitness[m]<bestpn[m]:bestpn[m]=fitness[m]poppn[m]=loc[m].copy()#更新种群历史最优适应if bestpn.min()<bestpg:bestpg=bestpn.min()allpg=poppn[bestpn.argmin()].copy()bestfitness[i]=bestpgprint("当前最佳的群体适应值为:",bestfitness[i])#5.绘制可视化图片查看变化趋势
fig=plt.figure()
plt.title('适应度的变化曲线')
x=range(1,iterators+1,1)
plt.plot(x,bestfitness,color="green",label="PSO优化曲线",linewidth=2.0, linestyle="-")
plt.xlabel("迭代次数范围")
plt.ylabel("适应度值范围")
plt.legend(loc=3, borderaxespad=0., bbox_to_anchor=(0.7, 0.85))
plt.savefig('C:/Users/Zeng Zhong Yan/Desktop/粒子群算法.png', dpi=500, bbox_inches='tight')
plt.show()

4.算法效果展示

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/68903.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【AGC】云数据库API9开发问题汇总

【问题描述】 云数据库HarmonyOS API9 SDK已经推出了一段时间了&#xff0c;下面为大家汇总一些在集成使用中遇到的问题和解决方案。 【问题分析】 1. 报错信息&#xff1a;数据库初始化失败&#xff1a;{“message”&#xff1a;“The object type list and permission …

晶圆键合对准机的原理与应用

一、晶圆键合设备的工作原理 1、 第一个晶圆面朝下置于晶圆对准设备卡盘并传送到对准机内&#xff1b; 2、对准机内&#xff0c;晶圆在Z轴方向上移动直到被顶部的传输夹具真空吸附固定&#xff1b; 3、被传输夹具固定的第一个晶圆将成为后续对准工艺的基准&#xff0c;确定所…

51、基于注解方式开发Spring WebFlux,实现生成背压数据,就是实现一直向客户端发送消息

★ Spring WebFlux的两种开发方式 1. 采用类似于Spring MVC的注解的方式来开发。此时开发时感觉Spring MVC差异不大&#xff0c;但底层依然是反应式API。2. 使用函数式编程来开发★ 基于注解开发Spring WebFlux 开发上变化并不大&#xff0c;主要是处理方法的返回值可使用Mon…

本地使用GFPGAN进行图像人脸修复

人脸修复 1.下载项目和权重文件2.部署环境3.下载权重文件4.运行代码5.网页端体验 首先来看一下效果图 1.下载项目和权重文件 https://github.com/iptop/GFPGAN-for-Video.git2.部署环境 根据README文件部署好环境&#xff0c;额外还需要&#xff1a; cd GFPGAN-1.3.8 pyt…

介绍GitHub

GitHub 是一个基于互联网的源代码托管平台&#xff0c;可以帮助软件开发者存储和管理源代码&#xff0c;方便团队协作和版本控制。GitHub 的主要功能包括&#xff1a; 代码托管&#xff1a;开发者可以在 GitHub 上创建远程代码仓库&#xff0c;存储和管理他们的源代码。 版本控…

金融信创,软件规划需关注自主安全及生态建设

软件信创化&#xff0c;就是信息技术软件应用创新发展的意思&#xff08;简称为“信创”&#xff09;。 相信在中国&#xff0c;企业对于“信创化”这个概念并不陌生。「国强则民强」&#xff0c;今年来中国经济的快速发展&#xff0c;受到了各大欧美强国的“卡脖子”操作的影…

大数据面试题:MapReduce压缩方式

面试题来源&#xff1a; 《大数据面试题 V4.0》 大数据面试题V3.0&#xff0c;523道题&#xff0c;679页&#xff0c;46w字 可回答&#xff1a;1&#xff09;Hadoop常见的压缩算法有哪些&#xff1f; 问过的一些公司&#xff1a;网易云音乐(2022.11)&#xff0c;阿里(2020.…

css 文字单行多行超出长度后显示 ...

0.超出… 1、单行文本超出 <div class"content">测试数据&#xff1a;css单行文本超出显示省略号--------</div><style> .content{width: 200px;height: 200px;overflow:hidden;white-space: nowrap;text-overflow: ellipsis;-o-text-overflow:el…

Linux C++ 海康摄像头获取过车信息

代码 void CALLBACK MessageCallback(LONG lCommand, NET_DVR_ALARMER *pAlarmer, char *pAlarmInfo, DWORD dwBufLen, void *pUser) {printf("enter MessageCallback---------------------->\n");int i;NET_DVR_ALARMINFO_V30 struAlarmInfo;memcpy(&struAl…

微服务主流框架概览

微服务主流框架概览 目录概述需求&#xff1a; 设计思路实现思路分析1.HSF2.Dubbo 3.Spring Cloud5.gRPC Service mesh 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0c;skip hardness,make a be…

计算机图形学线性代数相关概念

Transformation&#xff08;2D-Model&#xff09; Scale(缩放) [ x ′ y ′ ] [ s 0 0 s ] [ x y ] (等比例缩放) \left[ \begin{matrix} x \\ y \end{matrix} \right] \left[ \begin{matrix} s & 0 \\ 0 & s \end{matrix} \right] \left[ \begin{matrix} x \\ y \en…

pinia和vuex的使用以及区别

还是要记笔记多看才行&#xff0c;要不然老是会忘记 它没有mutation,他只有state&#xff0c;getters&#xff0c;action【同步、异步】使用他来修改state数据pinia没有modules配置&#xff0c;每一个独立的仓库都是definStore生成出来的state是一个对象返回一个对象和组件的da…

AI工人操作行为流程规范识别算法

AI工人操作行为流程规范识别算法通过yolov7python网络模型框架&#xff0c;AI工人操作行为流程规范识别算法对作业人员的操作行为进行实时分析&#xff0c;根据设定算法规则判断操作行为是否符合作业标准规定的SOP流程。Yolo意思是You Only Look Once&#xff0c;它并没有真正的…

安达发APS|未来制造业何去何从?

从18世纪中叶随着蒸汽机的发展在英国开始的工业革命&#xff0c;到19世纪初由于电力的商业化而开始的大规模生产系统&#xff0c;再到20世纪末ICT(信息和通信技术)的发展和自动化系统的引入&#xff0c;制造业一直在创造可能被称为革命性的创新进步。目前&#xff0c;ICT技术的…

文件上传漏洞全面渗透姿势

0x00 文件上传场景 (本文档只做技术交流) 文件上传的场景真的随处可见&#xff0c;不加防范小心&#xff0c;容易造成漏洞&#xff0c;造成信息泄露&#xff0c;甚至更为严重的灾难。 比如某博客网站评论编辑模块&#xff0c;右上角就有支持上传图片的功能&#xff0c;提交带…

触摸屏与多台 PLC之间无线Ethernet通信

在实际系统中&#xff0c;同一个车间里分布多台PLC&#xff0c;由触摸屏集中控制。通常所有设备距离在几十米到上百米不等。在有通讯需求的时候&#xff0c;如果布线的话&#xff0c;工程量较大且不美观&#xff0c;这种情况下比较适合采用无线通信方式。本方案以威纶通触摸屏和…

使用Python进行健身手表数据分析

健身手表(Fitness Watch)数据分析涉及分析健身可穿戴设备或智能手表收集的数据&#xff0c;以深入了解用户的健康和活动模式。这些设备可以跟踪所走的步数、消耗的能量、步行速度等指标。本文将带您完成使用Python进行Fitness Watch数据分析的任务。 Fitness Watch数据分析是健…

(18)线程的实例认识:线程的控制,暂停,继续,停止,线程相互控制,协作

话不多&#xff0c;但比较中肯&#xff0c;本文参照c# 线程暂停继续的实现方式_哔哩哔哩_bilibili 一、老方式 1、这是一个老的实现方式&#xff0c;基本不推荐&#xff0c;背后控制的原理需要了解。 界面&#xff1a;三个button一个textbox …

说说CDN和负载均衡具体是怎么实现的

分析&回答 什么是 CDN CDN (全称 Content Delivery Network)&#xff0c;即内容分发网络。 构建在现有网络基础之上的智能虚拟网络&#xff0c;依靠部署在各地的边缘服务器&#xff0c;通过中心平台的负载均衡、内容分发、调度等功能模块&#xff0c;使用户就近获取所需…

智安网络|探索物联网架构:构建连接物体与数字世界的桥梁

物联网是指通过互联网将各种物理设备与传感器连接在一起&#xff0c;实现相互通信和数据交换的网络系统。物联网架构是实现这一连接的基础和框架&#xff0c;它允许物体与数字世界之间的互动和协作。 一、物联网架构的概述 物联网架构是一种分层结构&#xff0c;它将物联网系…