使用Python进行健身手表数据分析

健身手表(Fitness Watch)数据分析涉及分析健身可穿戴设备或智能手表收集的数据,以深入了解用户的健康和活动模式。这些设备可以跟踪所走的步数、消耗的能量、步行速度等指标。本文将带您完成使用Python进行Fitness Watch数据分析的任务。

Fitness Watch数据分析是健康和保健领域企业的重要工具。通过分析健身可穿戴设备的用户数据,公司可以了解用户行为,提供个性化的解决方案,并有助于改善用户的整体健康和福祉。

下面是我们在处理健身手表数据分析问题时可以遵循的过程:

  1. 从健身手表收集数据,确保数据准确可靠。

  2. 执行EDA以获得对数据的初步了解。

  3. 从原始数据中创建可能提供更有意义的见解的新功能。

  4. 创建数据的可视化表示,以有效地传达见解。

  5. 根据时间间隔或健身指标水平对用户的活动进行分段,并分析其表现。

因此,该过程始于从健身手表收集数据。每款健身手表都可与智能手机上的应用程序配合使用。您可以从智能手机上的该应用程序收集数据。例如,这里用的是从苹果的健康应用程序收集了的一个健身手表的数据。

使用Python进行分析

现在,让我们通过导入必要的Python库和数据集来开始Fitness Watch数据分析的任务:

1import pandas as pd  
2import plotly.io as pio  
3import plotly.graph_objects as go  
4pio.templates.default = "plotly_white"  
5import plotly.express as px  
6  
7data = pd.read_csv("Apple-Fitness-Data.csv")  
8print(data.head())  

输出

 1         Date       Time  Step Count  Distance  Energy Burned  \  20  2023-03-21  16:01:23           46   0.02543         14.620     31  2023-03-21  16:18:37          645   0.40041         14.722     42  2023-03-21  16:31:38           14   0.00996         14.603     53  2023-03-21  16:45:37           13   0.00901         14.811     64  2023-03-21  17:10:30           17   0.00904         15.153     7  8   Flights Climbed  Walking Double Support Percentage  Walking Speed    90                3                              0.304          3.060    
101                3                              0.309          3.852    
112                4                              0.278          3.996    
123                3                              0.278          5.040    
134                3                              0.281          5.184  

让我们看看这个数据是否包含任何null值:

1print(data.isnull().sum())  

输出

1Date                                 0  
2Time                                 0  
3Step Count                           0  
4Distance                             0  
5Energy Burned                        0  
6Flights Climbed                      0  
7Walking Double Support Percentage    0  
8Walking Speed                        0  
9dtype: int64  

因此,数据没有任何空值。让我们进一步分析步数随时间的变化:

1# Step Count Over Time  
2fig1 = px.line(data, x="Time",  
3               y="Step Count",  
4               title="Step Count Over Time")  
5fig1.show()  

现在,让我们来看看随着时间的推移所覆盖的距离:

1# Distance Covered Over Time  
2fig2 = px.line(data, x="Time",  
3               y="Distance",  
4               title="Distance Covered Over Time")  
5fig2.show()  

现在,让我们来看看能量随着时间推移的消耗:

1# Energy Burned Over Time  
2fig3 = px.line(data, x="Time",  
3               y="Energy Burned",  
4               title="Energy Burned Over Time")  
5fig3.show()  

现在,让我们来看看步行速度随着时间的推移:

1# Walking Speed Over Time  
2fig4 = px.line(data, x="Time",  
3               y="Walking Speed",  
4               title="Walking Speed Over Time")  
5fig4.show()  

现在,让我们计算并查看每天的平均步数:

1# Calculate Average Step Count per Day  
2average_step_count_per_day = data.groupby("Date")["Step Count"].mean().reset_index()  
3  
4fig5 = px.bar(average_step_count_per_day, x="Date",  
5              y="Step Count",  
6              title="Average Step Count per Day")  
7fig5.update_xaxes(type='category')  
8fig5.show()  

输出

现在,让我们来看看步行效率:

1# Calculate Walking Efficiency  
2data["Walking Efficiency"] = data["Distance"] / data["Step Count"]  
3  
4fig6 = px.line(data, x="Time",  
5               y="Walking Efficiency",  
6               title="Walking Efficiency Over Time")  
7fig6.show()  

现在,让我们来看看步数和步行速度随时间间隔的变化:

 1# Create Time Intervals  2time_intervals = pd.cut(pd.to_datetime(data["Time"]).dt.hour,  3                        bins=[0, 12, 18, 24],  4                        labels=["Morning", "Afternoon", "Evening"],   5                        right=False)  6  7data["Time Interval"] = time_intervals  8  9# Variations in Step Count and Walking Speed by Time Interval  
10fig7 = px.scatter(data, x="Step Count",  
11                  y="Walking Speed",  
12                  color="Time Interval",  
13                  title="Step Count and Walking Speed Variations by Time Interval",  
14                  trendline='ols')  
15fig7.show()

现在,让我们比较所有健康和健身指标的日平均值:

 1# Reshape data for treemap  2daily_avg_metrics = data.groupby("Date").mean().reset_index()  3  4daily_avg_metrics_melted = daily_avg_metrics.melt(id_vars=["Date"],   5                                                  value_vars=["Step Count", "Distance",   6                                                              "Energy Burned", "Flights Climbed",   7                                                              "Walking Double Support Percentage",   8                                                              "Walking Speed"])  9  
10# Treemap of Daily Averages for Different Metrics Over Several Weeks  
11fig = px.treemap(daily_avg_metrics_melted,  
12                 path=["variable"],  
13                 values="value",  
14                 color="variable",  
15                 hover_data=["value"],  
16                 title="Daily Averages for Different Metrics")  
17fig.show()

上图将每个健康和健身指标表示为矩形图块。每个图块的大小对应于度量的值,并且图块的颜色表示度量本身。悬停数据在与可视化交互时显示每个指标的精确平均值。

步骤计数度量由于其与其他度量相比通常更高的数值而主导可视化,使得难以有效地可视化其他度量中的变化。由于步数的值高于所有其他指标的值,让我们再次查看此可视化,但不包含步数:

 1# Select metrics excluding Step Count  2metrics_to_visualize = ["Distance", "Energy Burned", "Flights Climbed",   3                        "Walking Double Support Percentage", "Walking Speed"]  4  5# Reshape data for treemap  6daily_avg_metrics_melted = daily_avg_metrics.melt(id_vars=["Date"], value_vars=metrics_to_visualize)  7  8fig = px.treemap(daily_avg_metrics_melted,  9                 path=["variable"],  
10                 values="value",  
11                 color="variable",  
12                 hover_data=["value"],  
13                 title="Daily Averages for Different Metrics (Excluding Step Count)")  
14fig.show()

总结

这就是如何使用Python进行健身数据分析。Fitness Watch数据分析是健康和保健领域企业的重要工具。通过分析健身可穿戴设备的用户数据,公司可以了解用户行为,提供个性化的解决方案,并有助于改善用户的整体健康和福祉。

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

若有侵权,请联系删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/68871.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(18)线程的实例认识:线程的控制,暂停,继续,停止,线程相互控制,协作

话不多,但比较中肯,本文参照c# 线程暂停继续的实现方式_哔哩哔哩_bilibili 一、老方式 1、这是一个老的实现方式,基本不推荐,背后控制的原理需要了解。 界面:三个button一个textbox …

说说CDN和负载均衡具体是怎么实现的

分析&回答 什么是 CDN CDN (全称 Content Delivery Network),即内容分发网络。 构建在现有网络基础之上的智能虚拟网络,依靠部署在各地的边缘服务器,通过中心平台的负载均衡、内容分发、调度等功能模块,使用户就近获取所需…

智安网络|探索物联网架构:构建连接物体与数字世界的桥梁

物联网是指通过互联网将各种物理设备与传感器连接在一起,实现相互通信和数据交换的网络系统。物联网架构是实现这一连接的基础和框架,它允许物体与数字世界之间的互动和协作。 一、物联网架构的概述 物联网架构是一种分层结构,它将物联网系…

innovus:route within pin 和限制pin shape内via 数量

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 setNanoRouteMode -routeWithViaInPin "1:1" setNanoRouteMode -routeWithViaOnlyForStandardCellPin "1:1"

多个pdf怎么合并在一起?跟着我的步骤一起合并

多个pdf怎么合并在一起?利用PDF文档合并功能可以帮助您更有效地管理文件,将多个相关文件整合成一个文件,避免分散在多个文件中。此外,合并后的文件更便于共享和传输,因为只需共享一个文件而不是多个文件。虽然合并文件…

IntelliJ IDEA(Windows 版)的所有快捷键

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥 大家好 本文参考了 IntelliJ IDEA 的官网,列举了IntelliJ IDEA(Windows 版)的所有快捷…

数据脱敏sensitive(前端或数据库加密,解密)

可以对数据加密,解密,对数据库加密的数据进行解密显示,对数据库没有加密的数据进行加密处理展示前端等待 1:引入数据如下结构 1-1:SensitiveDecode脱敏解密注解 package com.example.poi.desensitization.annotation;…

将 Python 与 RStudio IDE 配合使用(R与Python系列第一篇)

目录 前言: 1-安装reticulate包 2-安装Python 3-选择Python的默认版本(配置Python环境) 4-使用Python 4.1 运行一个简单的Python脚本 4.2 在RStudio上安装Python模块 4.3 在 R 中调用 Python 模块 4.4 在RStudio上调用Python脚本写的…

vue前端解决跨域

1,首先 axios请求,看后端接口路径,http://122.226.146.110:25002/api/xx/ResxxList,所以baseURL地址改成 ‘/api’ let setAxios originAxios.create({baseURL: /api, //这里要改掉timeout: 20000 // request timeout}); export default s…

【C++ 二叉搜索树】

目录 1.什么是二叉搜索树2.构建二叉搜索树2.1首先搭建树的框架2.2搭建搜索树的框架 3.二叉搜索树的插入3.1非递归式插入3.2递归式插入 4.二叉搜索树的查找4.1非递归查找4.2递归查找 5.二叉搜索树的删除5.1非递归删除5.2递归删除 6.整个代码实现 1.什么是二叉搜索树 简单来讲就…

NSSCTF web 刷题记录1

文章目录 前言题目[GXYCTF 2019]禁止套娃方法一方法二 [NCTF 2019]Fake XML cookbook[NSSRound#7 Team]ec_RCE[NCTF 2018]Flask PLUS 前言 今天是2023.9.3,大二开学前的最后一天。老实说ctf的功力还是不太够做的题目太少,新学期新气象。不可急于求成&am…

设置 Hue Server 与 Hue Web 界面之间的会话超时时间

设置 Hue Server 与 Hue Web 界面之间的会话超时时间 在 CDH 的 Hue 中,Auto Logout Timeout 参数表示用户在不活动一段时间后将自动注销(登出)的超时时间。当用户在 Hue 中处于不活动状态超过该设定时间时,系统将自动注销用户&am…

FreeRTOS中断与任务之间同步(Error:..\..\FreeRTOS\portable\RVDS\ARM_CM4F\port.c,422 )

前言: FreeRTOS中,中断需要注意几点: 何时使用中断;中断服务函数(ISR)要处理的数据量有多大,通常我们希望中断的切换越快越好,也就是说,ISR尽量采用耗时较少的处理方式…

撮合前端平台在低代码平台的落地实践 | 京东云技术团队

在京东技术的发展当下,不同的业务线,不同的区域,甚至于很多触达消费者的端,正在被中台架构能力所支撑。大家都很清楚,中台建设能够带来技术的规模化效应,具有提高业务协同、加速创新和交付速度、提高系统稳…

Java问题诊断和排查工具

文章目录 一、前言二、Java问题诊断和排查工具1、JDK自带工具2、常用命令3、JAVA Dump:3.1、jps3.2、jstack3.3、jmap3.3.1、jmap -heap pid:查看堆使用情况3.3.2、jmap -histo pid:查看堆中对象数量和大小3.3.3、jmap -dump:formatb,fileheapdump pid&a…

K8S的介绍和架构

仅供入门 K8S的介绍和架构 一. 什么是kubernetes二、Kubernetes架构和组件 2.1 核心组件 2.1.1 Kubernetes Master控制组件,调度管理整个系统(集群),包含如下组件: a、Kubernetes API Serverb、Kubernetes Schedulerc、Kubernet…

springboot自动装配原理,手写一个starter。

文章目录 springboot自动装配原理手写starter手写starter总结: springboot自动装配原理 口述: springboot自动装配的话它其实就是只需要我们添加一个starter起步依赖,它就能完成这个依赖组件相关Bean的自动注入,其实就是自动的将…

SpringMVC的工作流程及入门

目录 一、概述 ( 1 ) 是什么 ( 2 ) 作用 二、工作流程 ( 1 ) 流程 ( 2 ) 步骤 三、入门实例 ( 1 ) 入门实例 ( 2 ) 静态资源处理 给我们带来的收获 一、概述 ( 1 ) 是什么 SpringMVC是一个基于Java的Web应用开发框架,它是Spring Framework的一部…

5.bs4的基本使用

bs4是python的一个第三方库,用来做数据解析的 目录 1 安装bs4 2 解析本地的html文件 3 解析网上的html 4 找到指定的标签 4.1 获取页面中第一个指定标签的内容 4.2 查找页面中的第一个符合要求的内容 BeautifulSoup.find() 4.2.1 标签 4.2.2 类名 …

Linux--进程概念

1.什么是程序?什么是进程?有什么区别? 程序:是静态的概念,gcc xxx.c -o pro 磁盘中生成的pro文件,叫做程序。 进程:是程序的一种与运行活动,通俗的意思是程序跑起来了,系…