使用级联函数
基本流程
函数介绍
在OpenCV中,人脸检测使用的是cv2.CascadeClassifier.detectMultiScale()函数,它可以检测出图片中所有的人脸。该函数由分类器对象调用,其语法格式为:
objects = cv2.CascadeClassifier.detectMultiScale( image[, scaleFactor[,
minNeighbors[, flags[, minSize[, maxSize]]]]] )
式中各个参数及返回值的含义为:
- image:待检测图像,通常为灰度图像。
- scaleFactor:表示在前后两次相继的扫描中,搜索窗口的缩放比例。
- minNeighbors:表示构成检测目标的相邻矩形的最小个数。默认情况下,该值为3,意味着有3个以上的检测标记存在时,才认为人脸存在。如果希望提高检测的准确率,可以将该值设置得更大,但同时可能会让一些人脸无法被检测到。
- flags:该参数通常被省略。在使用低版本OpenCV(OpenCV 1.X版本)时,它可能会被设置为CV_HAAR_DO_CANNY_PRUNING,表示使用Canny边缘检测器来拒绝一些区域。
- minSize:目标的最小尺寸,小于这个尺寸的目标将被忽略。
- maxSize:目标的最大尺寸,大于这个尺寸的目标将被忽略。如果maxSize和minSize大小一致,表示仅在一个尺度上查找目标。通常情况下,将该可选参数省略即可。
objects:返回值,目标对象的矩形框向量组。该值是一组矩形信息,包含了每个检测到的人脸所对应矩形框的(x方向位置、y方向位置、宽度、高度)信息。
代码示例
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 17 21:09:07 2024@author: 李立宗公众号:计算机视觉之光知识星球:计算机视觉之光"""import cv2
# ===============1 原始图像处理====================
image = cv2.imread('manyPeople.jpg')
gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
# ================2 加载分类器========================
faceCascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# =================3 人脸检测========================
faces = faceCascade.detectMultiScale(gray,scaleFactor = 1.04,minNeighbors = 18,minSize = (8,8))
# ===============4 打印输出的实现=====================
print("发现{0}张人脸!".format(len(faces)))
print("其位置分别是:")
print(faces)
# ==================5 标注人脸及显示=======================
for(x,y,w,h) in faces:cv2.rectangle(image,(x,y),(x+w,y+h),(0,255,0),2)
cv2.imshow("result",image)
cv2.waitKey(0)
cv2.destroyAllWindows()
检测结果:
学习参考
理解并实现OpenCV中的图像平滑技术
OpenCV中的边缘检测技术及实现
参考文献
1、OpenCV轻松入门
李立宗,OpenCV轻松入门,电子工业出版社,2023
2、计算机视觉40例
李立宗,计算机视觉40例,电子工业出版社,2022