linux kernel 内存踩踏之KASAN_SW_TAGS(二)

一、背景

linux kernel 内存踩踏之KASAN(一)_kasan版本跟hasan版本区别-CSDN博客

上一篇简单介绍了标准版本的KASAN使用方法和实现,这里将介绍KASAN_SW_TAGS和KASAN_HW_TAGS

的使用和背后基本原理,下图是三种方式的对比:

Overhead typeMTEKASAN_SW_TAG(kernel)/HWASan(userspace)KASAN(kernel)/ASan(userspace)
RAM3%-5%10%-35%~2x
CPU0%-5%~2x~2x
Code size2%-4%40%-50%50%-2x

上表数据来源google的 userspace下MTE、HWASAN和ASAN的测试数据,内核的部分没有找到准确的对比数据,应该也差不多,套用上表。

二、KASAN_SW_TAGS使能相关配置

关键差异:CONFIG_KASAN_SW_TAGS=y

/sys/kernel/debug # zcat /proc/config.gz | grep -i kasan
CONFIG_KASAN_SHADOW_OFFSET=0xefff800000000000 //这个offset和普通版本kasan有差异
CONFIG_DRIVER_KASAN_TEST=m
CONFIG_HAVE_ARCH_KASAN=y
CONFIG_HAVE_ARCH_KASAN_SW_TAGS=y
CONFIG_HAVE_ARCH_KASAN_HW_TAGS=y
CONFIG_HAVE_ARCH_KASAN_VMALLOC=y
CONFIG_CC_HAS_KASAN_GENERIC=y
CONFIG_CC_HAS_KASAN_SW_TAGS=y
CONFIG_KASAN=y
CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX=y
# CONFIG_KASAN_GENERIC is not set
CONFIG_KASAN_SW_TAGS=y     //SW_TAGS 版本kasan
# CONFIG_KASAN_HW_TAGS is not set
CONFIG_KASAN_OUTLINE=y
# CONFIG_KASAN_INLINE is not set
CONFIG_KASAN_STACK=y      //stack kasan检测,如局部变量,局部数组等操作引起的内存踩踏
CONFIG_KASAN_VMALLOC=y    //vmalloc kasan检测,使用vmalloc申请内存的内存踩踏

三、KASAN_SW_TAGS基本原理

SW_TAG shadow的原理就是利用ARM64的TBI(Top Byte Ignore)特性,在最高byte存储指针存储能访问内存区域的shadow标记,利用指针操作地址时就会检查指针的shadow和操作地址的的shadow是否一致,不一致则触发内存异常并报告原因。

sw_tag 信息

#define KASAN_PAGE_FREE		KASAN_TAG_INVALID
#define KASAN_PAGE_REDZONE	KASAN_TAG_INVALID
#define KASAN_SLAB_REDZONE	KASAN_TAG_INVALID
#define KASAN_SLAB_FREE		KASAN_TAG_INVALID
#define KASAN_VMALLOC_INVALID	KASAN_TAG_INVALID /* only used for SW_TAGS */#define KASAN_TAG_KERNEL	0xFF /* native kernel pointers tag */
#define KASAN_TAG_INVALID	0xFE /* inaccessible memory tag */
#define KASAN_TAG_MAX		0xFD /* maximum value for random tags */#ifdef CONFIG_KASAN_HW_TAGS
#define KASAN_TAG_MIN		0xF0 /* minimum value for random tags */
#else
#define KASAN_TAG_MIN		0x00 /* minimum value for random tags */
#endif

SW_TAG的在指针内存分配时指定,内存有效时随机生成的有效值范围:0x00 ~ 0xFD, 0xFE用来表示free或者redzone等标记;

下图是arm64 48位 pagesize 4K的内存映射图,shadow的16TB映射整个内核空间:

CONFIG_KASAN_SHADOW_OFFSET=0xefff800000000000

计算方法:

CONFIG_KASAN_SHADOW_OFFSET= KASAN_SHADOW_START - KERNEL_ADDR_START >>4

= 0xffff700000000000 - ( 0xffff000000000000 >> 4) = 0xefff800000000000

有了这个kasan_shadow_offset, 后面我们需要获取一个内核地址对应的shadow 位置,只需要通过公式:

kernel_addr >> 4 + CONFIG_KASAN_SHADOW_OFFSET = kernel_addr对应的shadow_addr

四、sw_tag生成和验证流程分析

4.1 设置sw_tag

还是用kmalloc为例:

kmalloc
-->kmalloc_trace-->__kmem_cache_alloc_node-->slab_alloc_node-->slab_post_alloc_hook-->kasan_slab_allocvoid * __must_check __kasan_slab_alloc(struct kmem_cache *cache,void *object, gfp_t flags, bool init)
{..../** Generate and assign random tag for tag-based modes.* Tag is ignored in set_tag() for the generic mode.*/tag = assign_tag(cache, object, false);    // 1、随机数分配tagtagged_object = set_tag(object, tag);      // 2、设置tag 到指针 /** Unpoison the whole object.* For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.*/kasan_unpoison(tagged_object, cache->object_size, init); //3、从分配地址和size确认tag是否需要更新,如果和上面新分配的tag值不同,则更新tag/* Save alloc info (if possible) for non-kmalloc() allocations. */if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache))kasan_save_alloc_info(cache, tagged_object, flags);//4、存储分配stackreturn tagged_object;
}#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
#define __tag_shifted(tag)  ((u64)(tag) << 56)
#define __tag_reset(addr)   __untagged_addr(addr)
#define __tag_get(addr)     (__u8)((u64)(addr) >> 56)

流程如下:

1、分配tag随机数(0x00~0xFD)

2、给指针最高byte存储新 tag

3、根据指针tag和分配的长度,检查 ptr>>4 + shadow_offset处存储的tag值是否一致,不一致则更新

4、返回指针(高byte为tag)

4.2 检查指针

检查指针即使是在kasan_check_range中进行的,

(gdb) disassemble __hwasan_store1_noabort
Dump of assembler code for function __hwasan_store1_noabort:0xffff8000803d6f08 <+0>:	paciasp0xffff8000803d6f0c <+4>:	stp	x29, x30, [sp, #-16]!0xffff8000803d6f10 <+8>:	xpaclri0xffff8000803d6f14 <+12>:	mov	w2, #0x1                   	// #10xffff8000803d6f18 <+16>:	mov	x29, sp0xffff8000803d6f1c <+20>:	mov	x3, x300xffff8000803d6f20 <+24>:	mov	x1, #0x1                   	// #10xffff8000803d6f24 <+28>:	bl	0xffff8000803d6e38 <kasan_check_range>0xffff8000803d6f28 <+32>:	ldp	x29, x30, [sp], #160xffff8000803d6f2c <+36>:	autiasp0xffff8000803d6f30 <+40>:	retbool kasan_check_range(const void *addr, size_t size, bool write,unsigned long ret_ip)
{u8 tag;u8 *shadow_first, *shadow_last, *shadow;void *untagged_addr;if (unlikely(size == 0))return true;if (unlikely(addr + size < addr))return !kasan_report(addr, size, write, ret_ip);tag = get_tag((const void *)addr);  //1、获取指针tag/** Ignore accesses for pointers tagged with 0xff (native kernel* pointer tag) to suppress false positives caused by kmap.** Some kernel code was written to account for archs that don't keep* high memory mapped all the time, but rather map and unmap particular* pages when needed. Instead of storing a pointer to the kernel memory,* this code saves the address of the page structure and offset within* that page for later use. Those pages are then mapped and unmapped* with kmap/kunmap when necessary and virt_to_page is used to get the* virtual address of the page. For arm64 (that keeps the high memory* mapped all the time), kmap is turned into a page_address call.* The issue is that with use of the page_address + virt_to_page* sequence the top byte value of the original pointer gets lost (gets* set to KASAN_TAG_KERNEL (0xFF)).*/if (tag == KASAN_TAG_KERNEL)return true;untagged_addr = kasan_reset_tag((const void *)addr); //2、将带tag指针转换成指针if (unlikely(!addr_has_metadata(untagged_addr)))return !kasan_report(addr, size, write, ret_ip);shadow_first = kasan_mem_to_shadow(untagged_addr);  //3、提取对应地址的sw_tag shadow值shadow_last = kasan_mem_to_shadow(untagged_addr + size - 1); //4、提取访问地址尾部的sw_tag shadow值for (shadow = shadow_first; shadow <= shadow_last; shadow++) {if (*shadow != tag) {                              //5、遍历检查shadow tag和指针tag是否匹配return !kasan_report(addr, size, write, ret_ip);}}return true;
}

如上面代码逻辑,检查tag的流程如下:

1、传入指针和内存操作的长度

2、获取指针tag

3、将带tag指针转换成指针

4、提取对应地址的sw_tag shadow值

5、提取访问地址尾部的sw_tag shadow值

6、遍历检查shadow tag和指针tag是否匹配

五、利用 test driver程序验证

还是上一篇的例子(linux kernel 内存踩踏之KASAN(一)_kasan版本跟hasan版本区别-CSDN博客):

例子日志:

/test # echo 0 > /dev/kasan_test 
[  150.681333] kmalloc_oob_right d2ff000003de9c00
[  150.691414] ==================================================================
[  150.693254] BUG: KASAN: invalid-access in kmalloc_oob_right.constprop.0+0x4c/0x6c [kasan_driver]
[  150.695503] Write of size 1 at addr d2ff000003de9c81 by task sh/181
[  150.696332] Pointer tag: [d2], memory tag: [fe]
[  150.696848] 
[  150.697599] CPU: 1 PID: 181 Comm: sh Tainted: G    B            N 6.6.1-g00ad0b878692 #18
[  150.698596] Hardware name: linux,dummy-virt (DT)
[  150.699352] Call trace:
[  150.699744]  dump_backtrace+0x90/0xe8
[  150.700697]  show_stack+0x18/0x24
[  150.701221]  dump_stack_lvl+0x48/0x60
[  150.701716]  print_report+0x15c/0x54c
[  150.702204]  kasan_report+0xc4/0x108
[  150.702678]  kasan_check_range+0x80/0xa4
[  150.703198]  __hwasan_store1_noabort+0x20/0x2c
[  150.703749]  kmalloc_oob_right.constprop.0+0x4c/0x6c [kasan_driver]
[  150.704593]  kasan_test_case+0x40/0xc0 [kasan_driver]
[  150.705354]  kasan_testcase_write+0x88/0x130 [kasan_driver]
[  150.706170]  vfs_write+0x144/0x4d8
[  150.706667]  ksys_write+0xe0/0x1b0
[  150.707166]  __arm64_sys_write+0x44/0x58
[  150.707729]  invoke_syscall+0x60/0x17c
[  150.708246]  el0_svc_common.constprop.0+0x78/0x13c
[  150.708842]  do_el0_svc+0x30/0x40
[  150.709462]  el0_svc+0x40/0x100
[  150.709973]  el0t_64_sync_handler+0x120/0x12c
[  150.710410]  el0t_64_sync+0x190/0x194
[  150.710946] 
[  150.711219] The buggy address belongs to the object at ffff000003de9c80
[  150.711219]  which belongs to the cache kmalloc-128 of size 128
[  150.712055] The buggy address is located 1 bytes inside of
[  150.712055]  128-byte region [ffff000003de9c80, ffff000003de9d00)
[  150.712749] 
[  150.713093] The buggy address belongs to the physical page:
[  150.713741] page:(____ptrval____) refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x43de9
[  150.714943] flags: 0x3fffc0000000800(slab|node=0|zone=0|lastcpupid=0xffff|kasantag=0x0)
[  150.715955] page_type: 0xffffffff()
[  150.716752] raw: 03fffc0000000800 82ff000003402600 dead000000000122 0000000000000000
[  150.717349] raw: 0000000000000000 0000000080200020 00000001ffffffff 0000000000000000
[  150.717938] page dumped because: kasan: bad access detected
[  150.718358] 
[  150.718602] Memory state around the buggy address:
[  150.719208]  ffff000003de9a00: 2c 2c 2c 2c 2c 2c 2c fe 28 28 28 28 28 28 28 28
[  150.719744]  ffff000003de9b00: 66 66 66 66 66 66 66 66 f8 f8 f8 f8 f8 f8 f8 f8
[  150.720267] >ffff000003de9c00: d2 d2 d2 d2 d2 d2 d2 d2 fe fe fe fe fe fe fe fe
[  150.720886]                                            ^
[  150.721635]  ffff000003de9d00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
[  150.722291]  ffff000003de9e00: fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe fe
[  150.722978] ==================================================================
[  150.724556] kasan_test_case type 0

调试:

(gdb) disassemble 
Dump of assembler code for function kmalloc_oob_right:
0xffff80007b160300 <+0>:	paciasp0xffff80007b160304 <+4>:	adrp	x0, 0xffff8000822ce000 <cpu_ops+432>0xffff80007b160308 <+8>:	stp	x29, x30, [sp, #-32]!0xffff80007b16030c <+12>:	mov	x2, #0x80                  	// #1280xffff80007b160310 <+16>:	mov	w1, #0xcc0                 	// #32640xffff80007b160314 <+20>:	mov	x29, sp0xffff80007b160318 <+24>:	ldr	x0, [x0, #3648]0xffff80007b16031c <+28>:	str	x19, [sp, #16]0xffff80007b160320 <+32>:	bl	0xffff80008033c920 <kmalloc_trace>  //1.指针设置sw tag 
=> 0xffff80007b160324 <+36>:	mov	x2, x0         //断点0xffff80007b160328 <+40>:	adrp	x1, 0xffff80007b1640000xffff80007b16032c <+44>:	add	x1, x1, #0x1100xffff80007b160330 <+48>:	add	x1, x1, #0x480xffff80007b160334 <+52>:	mov	x19, x00xffff80007b160338 <+56>:	adrp	x0, 0xffff80007b1640000xffff80007b16033c <+60>:	add	x0, x0, #0x500xffff80007b160340 <+64>:	bl	0xffff80008015d280 <_printk>0xffff80007b160344 <+68>:	add	x0, x19, #0x810xffff80007b160348 <+72>:	bl	0xffff8000803d6f08 <__hwasan_store1_noabort> //2.检查指针访问的内存是否合法0xffff80007b16034c <+76>:	mov	w1, #0x79                  	// #1210xffff80007b160350 <+80>:	strb	w1, [x19, #129]0xffff80007b160354 <+84>:	mov	x0, x190xffff80007b160358 <+88>:	bl	0xffff80008033da7c <kfree>0xffff80007b16035c <+92>:	ldr	x19, [sp, #16]0xffff80007b160360 <+96>:	ldp	x29, x30, [sp], #320xffff80007b160364 <+100>:	autiasp0xffff80007b160368 <+104>:	ret


1、在上图断点处检查kmalloc_trace分配的指针值
(gdb) p /x $x0
$7 = 0xd2ff000003de9c00

2、利用计算公式,寻找对应指针地址存储的sw_tag shadow值:
ptr >> 4 + kasan_offset = kasan sw shadow

计算时记得将指针头替换成0xff
即:0xffff000003de9c00 >> 4 + 0xefff800000000000 = 0xFFFF7000003DE9C0
(gdb) x /30b 0xFFFF7000003DE9C0
0xffff7000003de9c0: 0xd2 0xd2 0xd2 0xd2 0xd2 0xd2 0xd2 0xd2
0xffff7000003de9c8: 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe
0xffff7000003de9d0: 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe
0xffff7000003de9d8: 0xfe 0xfe 0xfe 0xfe 0xfe 0xfe

上面的0xd2代表指针指向有效空间的范围,8 个0xd2, 由于sw_tag是每16个byte对应一个byte, 这里表示这个指针有效的范围是8*16 =128字节,正好和测试用例 kmalloc(128) 对应;

3、kasan report原因是我们访问的指针对应地址长度为0x81, 访问到了129字节处,这里对应的tag为0xfe,最后上报异常如下:

[ 150.695503] Write of size 1 at addr d2ff000003de9c81 by task sh/181
[ 150.696332] Pointer tag: [d2], memory tag: [fe]

六、总结

从KASAN 和 KASAN_SW_TAGS的对比来看

类型shadow内存占用cpu占用优缺点
KASAN1/8复杂,每次内存访问,需要计算对比shadow值定位准确,8byte内的踩踏也能检测;32位/64位均能使用
KASAN_SW_TAGS1/16每次内存访问,需要计算对比shadow值16 byte内的踩踏无法区分, 仅64才能使用(因为依赖arm64 TBI feature)

缺点1:16byte内的踩踏无法检测

KASAN_SW_TAGS的tag标记范围是16byte, 打一个比方:

ptr = kmalloc(129);

ptr[129] = 0; // 此时不会报错,无法检测到越界,实际上 pt[129] ~ ptr[128 + 16 -1] 内存越界操作都无法检测出来,因为这16字节的tag都是一样的,tag本身没有16byte內分配大小的记录;

缺点2:tag虽然是随机值,但是连续内存存在随机tag值一致导致漏检测可能

比如,

ptr1= kmalloc(128);

ptr2= kmalloc(128);

假如ptr1的tag是0x12, ptr1的tag也是0x12, 同时它们的内存连续,那么ptr1[128] = 0的操作就不会报错;

漏检测概率:由于0xfe和0xff两个值不会作为tag随机数, 连续内存生成重复tag的概率为1/254 * 1/254。

参考:

Android Native | 内存问题的终极武器--MTE

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/686294.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

萨科微半导体宋仕强介绍说

萨科微半导体宋仕强介绍说&#xff0c;电源管理芯片是指在电子设备系统中&#xff0c;负责对电能的变换、分配、检测等进行管理的芯片&#xff0c;其性能和可靠性直接影响电子设备的工作效率和使用寿命&#xff0c;是电子设备中的关键器件。萨科微slkor&#xff08;www.slkormi…

2023年中国数据智能管理峰会(DAMS上海站2023):核心内容与学习收获(附大会核心PPT下载)

随着数字经济的飞速发展&#xff0c;数据已经渗透到现代社会的每一个角落&#xff0c;成为驱动企业创新、提升治理能力、促进经济发展的关键要素。在这样的背景下&#xff0c;2023年中国数据智能管理峰会&#xff08;DAMS上海站2023&#xff09;应运而生&#xff0c;汇聚了众多…

1.逆向基础

文章目录 一、前言二、什么是逆向&#xff1f;三、软件逆向四、逆向分析技术五、文本字符六、Windows系统1.Win API2.WOW643.Windows消息机制4.虚拟内存 一、前言 原文以及后续文章可点击查看&#xff1a;逆向基础 逆向真的是一个很宏大的话题&#xff0c;而且大多数都是相当…

数据预处理 —— AI算法初识

一、预处理原因 AI算法对数据进行预处理的原因主要基于以下几个核心要点&#xff1a; 1. **数据清洗**&#xff1a; - 数据通常包含缺失值、异常值或错误记录&#xff0c;这些都会干扰模型训练和预测准确性。通过预处理可以识别并填充/删除这些不完整或有问题的数据。 2. **数…

LabVIEW智能监测系统

LabVIEW智能监测系统 设计与实现一个基于LabVIEW的智能监测系统&#xff0c;通过高效的数据采集和处理能力&#xff0c;提高监测精度和响应速度。系统通过集成传感器技术与虚拟仪器软件&#xff0c;实现对环境参数的实时监测与分析&#xff0c;进而优化监控过程&#xff0c;提…

如何实现Vuex数据持久化

Vuex是一个非常流行的状态管理工具&#xff0c;它可以帮助我们在Vue.js应用中管理和共享数据。然而&#xff0c;当应用重新加载或刷新时&#xff0c;Vuex的状态会被重置&#xff0c;这就导致了数据的丢失。那么&#xff0c;如何才能实现Vuex的数据持久化呢&#xff1f;让我们一…

C语言第二十六弹---字符串函数(下)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 目录 1、strncat 函数的使用 2、strncmp 函数的使用 3、strstr 函数的使用和模拟实现 4、strtok 函数的使用 5、strerror 函数的使用 6、perror 函数的使用…

51单片机编程应用(C语言):串口通信

目录 通信的基本概念和种类 1.1串行通信与并行通信 ​编辑 1.2同步通信与异步通信 1.3单工&#xff0c;半双工&#xff0c;全双工 1.4通信速率 二、波特率和比特率的关系 串口通信简介&#xff1a; 1.接口标准 RS-232 2、D型9针接口定义 3.通信协议&#xff1a; …

【类与对象 -2】学习类的6个默认成员函数中的构造函数与析构函数

目录 1.类的6个默认成员函数 2.构造函数 2.1概念 2.2特性 3.析构函数 3.1析构函数的概念 3.2特性 1.类的6个默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为空类。 空类中真的什么都没有吗&#xff1f;并不是&#xff0c;任何类在什么都不写时&#xff0c;…

PWM驱动直流电机

一、知识补充; 低频时有蜂鸣器响声&#xff0c;加大PWM频率&#xff0c;超出人耳范围就可以听不到&#xff0c;20Hz~20kHz 加大频率-->减小预分频器&#xff0c;从720-->36现在频率就是20kHz这样不会影响占空比&#xff1f; 二、接线图 三、代码分析 main,c #include…

docker (四)-docker网络

默认网络 docker会自动创建三个网络&#xff0c;bridge,host,none bridge桥接网络 如果不指定&#xff0c;新创建的容器默认将连接到bridge网络。 默认情况下&#xff0c;使用bridge网络&#xff0c;宿主机可以ping通容器ip&#xff0c;容器中也能ping通宿主机。 容器之间只…

飞天使-k8s知识点21-kubernetes实操6-daemonset

文章目录 daemonsetservice endpoint pod 之间的关系service基于Service访问外部服务 daemonset DaemonSet 是 Kubernetes 中的一种资源对象&#xff0c;它确保在集群中的每个节点上都运行一个 Pod 的副本。这对于运行集群级别的守护进程&#xff08;例如日志收集器、监控代理…

链式结构实现队列

链式结构实现队列 1.队列1.1队列的概念及结构1.2队列的实现 2. 队列的各种函数实现3. 队列的全部代码实现 1.队列 1.1队列的概念及结构 队列&#xff1a;只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出 FIFO(Fi…

.NET Core WebAPI中使用Log4net记录日志

一、安装NuGet包 二、添加配置 // log4net日志builder.Logging.AddLog4Net("CfgFile/log4net.config");三、配置log4net.config文件 <?xml version"1.0" encoding"utf-8"?> <log4net><!-- Define some output appenders -->…

python-自动化篇-办公-将PDF文件转存为图片

因工作中的某些奇葩要求&#xff0c;需要将PDF文件的每页内容转存成按顺序编号的图片。用第三方软件或者在线转换也可以&#xff0c;但批量操作还是Python方便&#xff0c;所谓搞定办公自动化&#xff0c;Python出山&#xff0c;一统天下&#xff1b;Python出征&#xff0c;寸草…

机器学习中7种常用的线性降维技术总结

上篇文章中我们主要总结了非线性的降维技术&#xff0c;本文我们来总结一下常见的线性降维技术。 1、Principal Component Analysis (PCA) Principal Component Analysis (PCA) 是一种常用的降维技术&#xff0c;用于将高维数据集转换为低维表示&#xff0c;同时保留数据集的…

高校疫情防控系统的全栈开发实战

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

Fiddler 无法抓包手机 https 报文的解决方案来啦!!

解决手机https无法抓包的问题 当你测试App的时候&#xff0c;想要通过Fiddler/Charles等工具抓包看下https请求的数据情况&#xff0c;发现大部分的App都提示网络异常/无数据等等信息 这时候怎么解决呢&#xff1f; 以软件测试面试提刷题APP为例&#xff1a; Fiddler上的显示…

蓝桥杯 星期计算

思路1 由于2022太大&#xff0c;用double来存储&#xff0c;即(52022 % 7) % 7即可 int num 5;int t (int)(Math.pow(20,22)%7);num t;num%7;System.out.println(num1);思路2 你需要知道 (a * b ) % p a % p * b % p Scanner scan new Scanner(System.in);int num 1;for…

深入解析ESP32C3(3)- bootloader启动流程

ESP32C3启动流程可以分为如下3 个步骤&#xff1a; 一级引导程序(PBL)&#xff1a;被固化在了ESP32-C3 内部的ROM 中&#xff0c;它会从flash 的0x0 偏移地址处加载二级引导程序至RAM (IRAM & DRAM) 中。二级引导程序(SBL)&#xff1a;从flash 中加载分区表和主程序镜像至…