树形dp 笔记

树的最长路径

给定一棵树,树中包含 n 个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。

现在请你找到树中的一条最长路径。

换句话说,要找到一条路径,使得使得路径两端的点的距离最远。

注意:路径中可以只包含一个点。

输入格式

第一行包含整数 n。

接下来 n−1 行,每行包含三个整数 ai,bi,ci,表示点 ai 和 bi 之间存在一条权值为 ci 的边。

输出格式

输出一个整数,表示树的最长路径的长度。

数据范围

1≤n≤10000,
1≤ai,bi≤n,
−1e5≤ci≤1e5

输入样例:
6
5 1 6
1 4 5
6 3 9
2 6 8
6 1 7
输出样例:
22

 边权不为负可以用两次dfs,边权有负就要用这种了

一个点选两个能走得贡献最大的孩子,相加就是能搭在这个点上最长的直径,所有点跑一遍,找最长的那个就行

理论上一个直径上每个点算出来的值都不一样,因为dfs得有个顺序,都是父亲向孩子走得,但每条直径都一定会被算到。

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 20010;int pos, n;
int h[N], e[N], w[N], ne[N], idx;
int ans;void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}int dfs(int u, int father)
{int dist = 0;int d1 = 0, d2 = 0;for(int i = h[u]; i != -1; i = ne[i]){int j = e[i];if(j == father)continue;int d = dfs(j, u) + w[i];dist = max(dist, d);if(d > d1)d2 = d1, d1 = d;else if(d > d2)d2 = d;}ans = max(ans, d1 + d2);return dist;
}int main()
{IOScin >> n;memset(h, -1, sizeof h);for(int i = 1; i < n; i ++){int a, b, c;cin >> a >> b >> c;add(a, b, c);add(b, a, c);}dfs(1, -1);cout << ans;return 0;
}

树的中心

给定一棵树,树中包含 n个结点(编号1~n)和 n−1 条无向边,每条边都有一个权值。

请你在树中找到一个点,使得该点到树中其他结点的最远距离最近。

输入格式

第一行包含整数 n。

接下来 n−1 行,每行包含三个整数 ai,bi,ci,表示点 ai 和 bi 之间存在一条权值为 ci 的边。

输出格式

输出一个整数,表示所求点到树中其他结点的最远距离。

数据范围

1≤n≤10000,
1≤ai,bi≤n,
1≤ci≤1e5

输入样例:
5 
2 1 1 
3 2 1 
4 3 1 
5 1 1
输出样例:
2

 可以延续上一题的思路,尝试枚举一下每个点

最远距离除了往下走的还有一条往上走的,要在两者中取一个最大值

dist数组存往下走的最大值,up数组存往上走的最大值

第一次dfs可以求出dist数组的每个值

然后第二次dfs可以用dist数组的值退出来up的值,根节点up为0,然后就可以按dfs顺序递推出来孩子的up的值了。

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 20010;int pos, n;
int h[N], e[N], w[N], ne[N], idx;
int dist[N], up[N];
int ans = 2e9;void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}int dfs(int u, int father)
{int res = 0;for(int i = h[u]; i != -1; i = ne[i]){int j = e[i];if(j == father)continue;int d = dfs(j, u) + w[i];res = max(res, d);}dist[u] = res;return res;
}void dfs1(int u, int father)
{int d1 = 0, d2 = 0;for(int i = h[u]; i != -1; i = ne[i]){int j = e[i];if(j == father)continue;int d = dist[j] + w[i];if(d > d1)d2 = d1, d1 = d;else if(d > d2)d2 = d;}if(up[u] > d1)d2 = d1, d1 = up[u];else if(up[u] > d2)d2 = up[u];for(int i = h[u]; i != -1; i = ne[i]){int j = e[i];if(j == father)continue;int res;if(dist[j] + w[i] == d1)res = d2;else res = d1;up[j] = res + w[i];int tmp = max(up[j], dist[j]);ans = min(ans, tmp);dfs1(j, u);}
}int main()
{IOScin >> n;memset(h, -1, sizeof h);for(int i = 1; i < n; i ++){int a, b, c;cin >> a >> b >> c;add(a, b, c);add(b, a, c);}dfs(1, -1);dfs1(1, -1);ans = min(ans, dist[1]);cout << ans;return 0;
}

数字转换

如果一个数 x 的约数之和 y(不包括他本身)比他本身小,那么 x 可以变成 y,y 也可以变成 x。

例如,4 可以变为 3,1 可以变为 7。

限定所有数字变换在不超过 n 的正整数范围内进行,求不断进行数字变换且不出现重复数字的最多变换步数。

输入格式

输入一个正整数 n。

输出格式

输出不断进行数字变换且不出现重复数字的最多变换步数。

数据范围

1≤n≤50000

输入样例:
7
输出样例:
3
样例解释

一种方案为:4→3→1→7。

可以把每个数字看成一个点,求得问题转换为求树的直径

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 50010;int n;
vector<int> g[N];
int ans;
bool st[N];
int sum[N];int get(int x)
{int res = 1;for(int i = 2; i * i <= x; i ++){if(x % i == 0){res += i;if(x / i != i)res += x / i;}}return res;
}int dfs(int u, int father)
{int d1 = 0, d2 = 0;for(auto j : g[u]){if(j == father)continue;int d = dfs(j, u) + 1;if(d > d1)d2 = d1, d1 = d;else if(d > d2)d2 = d;}ans = max(ans, d1 + d2);return d1;
}int main()
{IOScin >> n;for (int i = 1; i <= n; i ++)for (int j = 2; j <= n / i; j ++)sum[i * j] += i;for (int i = 2; i <= n; i ++)if (sum[i] < i){g[sum[i]].push_back(i);g[i].push_back(sum[i]);}dfs(1, -1);cout << ans;return 0;
}

二叉苹果树

有一棵二叉苹果树,如果树枝有分叉,一定是分两叉,即没有只有一个儿子的节点。

这棵树共 N 个节点,编号为 1 至 N,树根编号一定为 1。

我们用一根树枝两端连接的节点编号描述一根树枝的位置。

一棵苹果树的树枝太多了,需要剪枝。但是一些树枝上长有苹果,给定需要保留的树枝数量,求最多能留住多少苹果。

这里的保留是指最终与1号点连通。

输入格式

第一行包含两个整数 N 和 Q,分别表示树的节点数以及要保留的树枝数量。

接下来 N−1 行描述树枝信息,每行三个整数,前两个是它连接的节点的编号,第三个数是这根树枝上苹果数量。

输出格式

输出仅一行,表示最多能留住的苹果的数量。

数据范围

1≤Q<N≤100.
N≠1,
每根树枝上苹果不超过 30000个。

输入样例:
5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出样例:
21

有依赖的背包问题的简化版

f[u][j]表示节点u,可分配树枝数量为j,最大值    (j也可理解为背包容量,但也有点不一样,这个容量不包括本身在内)

理解写在注释里了

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 110, M = 210;int n, m;
int h[N], e[M], w[M], ne[M], idx;
int f[N][N];void add(int a, int b, int c)
{e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx ++;
}void dfs(int u, int father)
{for(int i = h[u]; i != -1; i = ne[i])//第i个物品组{//int j = e[i];if(e[i] == father)continue;dfs(e[i], u);for(int j = m; j >= 0; j --)//背包容量{for(int k = 0; k < j; k ++)//不同决策{f[u][j] = max(f[u][j], f[u][j - k - 1] + f[e[i]][k] + w[i]);//分组背包是物品组里的每个物品体积和价值不同//            f[u][i-1][j]    f[u][i-1][j-vk] + w}}}
}int main()
{IOSmemset(h, -1, sizeof h);cin >> n >> m;for(int i = 1; i < n; i ++){int a, b, c;cin >> a >> b >> c;add(a, b, c), add(b, a, c);}dfs(1, -1);cout << f[1][m];return 0;
}

战略游戏

鲍勃喜欢玩电脑游戏,特别是战略游戏,但有时他找不到解决问题的方法,这让他很伤心。

现在他有以下问题。

他必须保护一座中世纪城市,这条城市的道路构成了一棵树。

每个节点上的士兵可以观察到所有和这个点相连的边。

他必须在节点上放置最少数量的士兵,以便他们可以观察到所有的边。

你能帮助他吗?

例如,下面的树:

1463_1.jpg.gif

只需要放置 1 名士兵(在节点 1 处),就可观察到所有的边。

输入格式

输入包含多组测试数据,每组测试数据用以描述一棵树。

对于每组测试数据,第一行包含整数 N,表示树的节点数目。

接下来 N 行,每行按如下方法描述一个节点。

节点编号:(子节点数目) 子节点 子节点 …

节点编号从 0 到 N−1,每个节点的子节点数量均不超过 10,每个边在输入数据中只出现一次。

输出格式

对于每组测试数据,输出一个占据一行的结果,表示最少需要的士兵数。

数据范围

0<N≤1500,
一个测试点所有 N 相加之和不超过 300650。

输入样例:
4
0:(1) 1
1:(2) 2 3
2:(0)
3:(0)
5
3:(3) 1 4 2
1:(1) 0
2:(0)
0:(0)
4:(0)
输出样例:
1
2
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 1510;int n;
vector<int> g[N];
int d[N];
int f[N][2];void dfs(int u)
{f[u][0] = 0;f[u][1] = 1;for(auto j : g[u]){dfs(j);f[u][0] += f[j][1];f[u][1] += min(f[j][0], f[j][1]);}
}int main()
{IOSwhile(cin >> n){for(int i = 0; i <= n; i ++){g[i].clear();d[i] = 0;f[i][0] = f[i][1] = 0;}int ver1, ver2, num;char tmp;for(int i = 0; i < n; i ++){cin >> ver1 >>tmp >> tmp >> num >> tmp;for(int i = 0; i < num; i ++){cin >> ver2;g[ver1].push_back(ver2);d[ver2] ++;}}int root;for(int i = 0; i < n; i ++){if(!d[i]){root = i;break;}}dfs(root);cout << min(f[root][0], f[root][1]) << endl;}return 0;
}

皇宫看守

太平王世子事件后,陆小凤成了皇上特聘的御前一品侍卫。

皇宫各个宫殿的分布,呈一棵树的形状,宫殿可视为树中结点,两个宫殿之间如果存在道路直接相连,则该道路视为树中的一条边。

已知,在一个宫殿镇守的守卫不仅能够观察到本宫殿的状况,还能观察到与该宫殿直接存在道路相连的其他宫殿的状况。

大内保卫森严,三步一岗,五步一哨,每个宫殿都要有人全天候看守,在不同的宫殿安排看守所需的费用不同。

可是陆小凤手上的经费不足,无论如何也没法在每个宫殿都安置留守侍卫。

帮助陆小凤布置侍卫,在看守全部宫殿的前提下,使得花费的经费最少。

输入格式

输入中数据描述一棵树,描述如下:

第一行 n,表示树中结点的数目。

第二行至第 n+1 行,每行描述每个宫殿结点信息,依次为:该宫殿结点标号 i,在该宫殿安置侍卫所需的经费 k,该结点的子结点数 m,接下来 m 个数,分别是这个结点的 m 个子结点的标号 r1,r2,…,rm。

对于一个 n 个结点的树,结点标号在 1 到 n 之间,且标号不重复。

输出格式

输出一个整数,表示最少的经费。

数据范围

1≤n≤1500

输入样例:
6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0
输出样例:
25
样例解释:

在2、3、4结点安排护卫,可以观察到全部宫殿,所需经费最少,为 16 + 5 + 4 = 25。

本来以为和上一题差不多结果wa了

发现有一种情况是上一题没有的: 

选1、4点也是符合要求的

f[u][0] 不放,但能被父节点看到
f[u][1] 不放,但能被子节点看到
f[u][2] 放 

f[u][0]和f[u][2]都很好像,主要是如何得到f[u][1],能被子节点看到,那就选能被哪个子节点看到,其他点取min(f[u][1], f[u][2]),在所有方案中选个最小值

#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'using namespace std;typedef pair<int, int> PII;
typedef long long ll;const int N = 1510;int n;
vector<int> g[N];
int w[N], d[N];
int f[N][3];
//f[u][0] 不放,但能被父节点看到
//f[u][1] 不放,但能被子节点看到
//f[u][2] 放 void dfs(int u)
{f[u][0] = 0, f[u][1] = 0, f[u][2] = w[u];int sum = 0;for(auto j : g[u]){dfs(j);f[u][0] += min(f[j][1], f[j][2]);sum += min(f[j][1], f[j][2]);f[u][2] += min(min(f[j][0], f[j][1]), f[j][2]);}int res = 2e9;for(auto j : g[u]){res = min(res, sum + f[j][2] - min(f[j][1], f[j][2]));}f[u][1] = res;
}int main()
{IOScin >> n;for(int i = 0; i < n; i ++){int id, val, num;cin >> id >> val >> num;w[id] = val;for(int j = 0; j < num; j ++){int x;cin >> x;d[x] ++;g[id].push_back(x);}}int root;for(int i = 1; i <= n; i ++){if(!d[i]){root = i;break;}}dfs(root);cout << min(f[root][1], f[root][2]);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/684654.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Base64编码的优点与缺点

title: Base64编码的优点与缺点 date: 2024/2/16 14:06:37 updated: 2024/2/16 14:06:37 tags: Base64编码ASCII转换数据传输文本存储安全性数据膨胀字符串解码 Base64编码是一种将二进制数据转换为可打印ASCII字符的编码方式。它被广泛应用于数据传输和存储&#xff0c;以提升…

Pytest测试技巧之Fixture:模块化管理测试数据

在 Pytest 测试中&#xff0c;有效管理测试数据是提高测试质量和可维护性的关键。本文将深入探讨 Pytest 中的 Fixture&#xff0c;特别是如何利用 Fixture 实现测试数据的模块化管理&#xff0c;以提高测试用例的清晰度和可复用性。 什么是Fixture&#xff1f; 在 Pytest 中&a…

迎新年,送新手福利, 送2篇nhanes文章全套复现代码

美国国家健康与营养调查&#xff08; NHANES, National Health and Nutrition Examination Survey&#xff09;是一项基于人群的横断面调查&#xff0c;旨在收集有关美国家庭人口健康和营养的信息。 地址为&#xff1a;https://wwwn.cdc.gov/nchs/nhanes/Default.aspx 本次赠送…

2024年【T电梯修理】报名考试及T电梯修理考试报名

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2024年【T电梯修理】报名考试及T电梯修理考试报名&#xff0c;包含T电梯修理报名考试答案和解析及T电梯修理考试报名练习。安全生产模拟考试一点通结合国家T电梯修理考试最新大纲及T电梯修理考试真题汇总&#xff0c;…

【Redis快速入门】Redis三种集群搭建配置(主从集群、哨兵集群、分片集群)

个人名片&#xff1a; &#x1f43c;作者简介&#xff1a;一名大三在校生&#xff0c;喜欢AI编程&#x1f38b; &#x1f43b;‍❄️个人主页&#x1f947;&#xff1a;落798. &#x1f43c;个人WeChat&#xff1a;hmmwx53 &#x1f54a;️系列专栏&#xff1a;&#x1f5bc;️…

[嵌入式系统-14]:常见实时嵌入式操作系统比较:RT-Thread、uC/OS-II和FreeRTOS、Linux

目录 一、实时嵌入式操作系统 1.1 概述 1.2 什么“实时” 1.3 什么是硬实时和软实时 1.4 什么是嵌入式 1.5 什么操作系统 二、常见重量级操作系统 三、常见轻量级嵌入式操作系统 3.1 概述 3.2 FreeRTOS 3.3 uC/OS-II 3.4 RT-Thread 3.5 RT-Thread、uC/OS-II、Free…

【数据结构】并查集

并查集是简单的数据结构&#xff0c;学会并查集&#xff0c;为图打好基础。 并查集的概念 是树状的数据结构&#xff0c;用于处理相交集合的合并与查询 通常用森林表示&#xff0c;一片森林表示一个集合 并查集一般需要完成 查找元素属于哪个集合查看两个元素是否属于同一个集…

JDBC 核心 API

引入 mysql-jdbc 驱动 驱动 jar 版本的选择&#xff1a;推荐使用 8.0.25&#xff0c;省略时区设置java 工程导入依赖 项目创建 lib 文件夹导入驱动依赖 jar 包jar 包右键 - 添加为库 JDBC 基本使用步骤 注册驱动获取连接创建发送 sql 语句对象发送 sql 语句&#xff0c;并获…

GPT SOVITS项目 一分钟克隆 (文字输出)

步骤流程&#xff1a;&#xff08;首先使用UVR 提取人声文件&#xff0c;然后按下面步骤进行&#xff09; 注意这里提交的音频是参考的音频

深度学习:Pytorch安装的torch与torchvision的cuda版本冲突问题与解决历程记录

今天不小心将conda环境中的一个pytorch环境中的torch包给搞混了&#xff0c;将其更新了一下&#xff0c;发生了一些问题&#xff1a; 当时运行了一下这个代码&#xff1a; pip install torchvision --upgrade 导致了环境中包的混乱&#xff1a; 只能说欲哭无泪&#xff0c;当…

C语言strstr函数

简介 strstr(str1,str2) 函数用于判断字符串str2是否是str1的子串。如果是&#xff0c;则该函数返回 str1字符串从 str2第一次出现的位置开始到 str1结尾的字符串&#xff1b;否则&#xff0c;返回NULL。 实验 #include "stdio.h" #include "string.h"c…

相机图像质量研究(20)常见问题总结:CMOS期间对成像的影响--全局快门/卷帘快门

系列文章目录 相机图像质量研究(1)Camera成像流程介绍 相机图像质量研究(2)ISP专用平台调优介绍 相机图像质量研究(3)图像质量测试介绍 相机图像质量研究(4)常见问题总结&#xff1a;光学结构对成像的影响--焦距 相机图像质量研究(5)常见问题总结&#xff1a;光学结构对成…

【前端高频面试题--git篇】

&#x1f680; 作者 &#xff1a;“码上有前” &#x1f680; 文章简介 &#xff1a;前端高频面试题 &#x1f680; 欢迎小伙伴们 点赞&#x1f44d;、收藏⭐、留言&#x1f4ac; 前端高频面试题--git篇 往期精彩内容常用命令git add 和 git stage 有什么区别怎么使用git连接…

代码随想录算法训练营DAY18 | 二叉树 (5)

一、LeetCode 513 找树左下角的值 题目链接&#xff1a;513.找树左下角的值https://leetcode.cn/problems/find-bottom-left-tree-value/ 思路一&#xff1a;递归回溯全局变量比深度。 class Solution {int Max_depth 0;int result 0;public int findBottomLeftValue(TreeNo…

“分布式透明化”在杭州银行核心系统上线之思考

导读 随着金融行业数字化转型的需求&#xff0c;银行核心系统的升级改造成为重要议题。杭州银行成功上线以 TiDB 为底层数据库的新一代核心业务系统&#xff0c;该实践采用应用与基础设施解耦、分布式透明化的设计开发理念&#xff0c;推动银行核心系统的整体升级。 本文聚焦…

2024 年 11 款最佳 iPhone 数据恢复软件和应用程序

数据丢失是任何人都无法承受的&#xff0c;因为它对每个人都至关重要。但导致数据丢失的原因有很多&#xff0c;一些常见的原因是意外删除数据、设备被盗、iOS 越狱、硬件损坏、病毒感染等。我们列出了 iOS 的顶级恢复工具&#xff0c;其中包括&#xff1a;将帮助您方便地恢复数…

【AIGC】Stable Diffusion的生成参数入门

Stable Diffusion 的生成参数是用来控制图像生成过程的重要设置&#xff0c;下面是一些常见的生成参数及其详解 1、采样器&#xff0c;关于采样器的选择参照作者的上一篇文章 2、采样步数&#xff08;Sampling Steps&#xff09;是指在生成图像时模型执行的总步数&#xff0c…

一、ActiveMQ介绍

ActiveMQ介绍 一、JMS1.jms介绍2.jms消息传递模式3.JMS编码总体架构 二、消息中间件三、ActiveMQ介绍1.引入的原因1.1 原因1.2 遇到的问题1.3 解决思路 2.定义3.特点3.1 异步处理3.2 应用系统之间解耦3.3 实际-整体架构 4.作用 一、JMS 1.jms介绍 jms是java消息服务接口规范&…

Apache POI | Java操作Excel文件

目录 1、介绍 2、代码示例 2.1、将数据写入Excel文件 2.2、读取Excel文件中的数据 &#x1f343;作者介绍&#xff1a;双非本科大三网络工程专业在读&#xff0c;阿里云专家博主&#xff0c;专注于Java领域学习&#xff0c;擅长web应用开发、数据结构和算法&#xff0c;初步…

基于Python实现Midjourney集成到(个人/公司)平台中

目前Midjourney没有对外开放Api&#xff0c;想体验他们的服务只能在discord中进入他们的频道进行体验或者把他们的机器人拉入自己创建的服务器中&#xff1b;而且现在免费的也用不了了&#xff0c;想使用就得订阅。本教程使用midjourney-api这个开源项目&#xff0c;搭建Midjou…