Python算法探索:从经典到现代

引言

        Python,作为一种功能强大的编程语言,一直是算法实现的首选工具。从经典的排序和查找算法到现代的机器学习和深度学习算法,Python都展现出了其强大的实力。接下来,我们将一起探索Python算法的经典与现代。


一、经典算法:快速排序

        快速排序是一种高效的排序算法,它采用分治法的思想,通过选取一个基准元素,将待排序的数组划分为两个子数组,使得左边的元素都比基准元素小,右边的元素都比基准元素大,然后递归地对子数组进行排序。

示例代码:

def quicksort(arr):  if len(arr) <= 1:  return arr  pivot = arr[len(arr) // 2]  left = [x for x in arr if x < pivot]  middle = [x for x in arr if x == pivot]  right = [x for x in arr if x > pivot]  return quicksort(left) + middle + quicksort(right)  # 测试  
arr = [3,6,8,10,1,2,1]  
print(quicksort(arr))  # 输出: [1, 1, 2, 3, 6, 8, 10]

二、经典算法:二分查找

        二分查找是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是目标值,则搜索过程结束;如果目标值大于或小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且同样从中间元素开始比较。

示例代码:

def binary_search(arr, x):  low = 0  high = len(arr) - 1  mid = 0  while low <= high:  mid = (high + low) // 2  if arr[mid] < x:  low = mid + 1  elif arr[mid] > x:  high = mid - 1  else:  return mid  return -1  # 测试  
arr = [2, 3, 4, 10, 40]  
x = 10  
result = binary_search(arr, x)  
if result != -1:  print("元素在数组中的索引为", str(result))  
else:  print("元素不在数组中")

三、现代算法:支持向量机(SVM)

        支持向量机是一种广泛应用于分类、回归和异常检测等任务的机器学习算法。它基于统计学习理论,通过寻找一个超平面来最大化不同类别之间的间隔,从而实现分类。

示例代码:

from sklearn import svm  
from sklearn.model_selection import train_test_split  
from sklearn.datasets import load_iris  # 加载数据集  
iris = load_iris()  
X = iris.data  
y = iris.target  # 划分训练集和测试集  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)  # 创建SVM分类器  
clf = svm.SVC(kernel='linear')  # 训练模型  
clf.fit(X_train, y_train)  # 预测测试集  
y_pred = clf.predict(X_test)  # 评估模型  
accuracy = clf.score(X_test, y_test)  
print("SVM分类准确率:", accuracy)

四、现代算法:神经网络

        神经网络是一种模拟人脑神经元结构的计算模型,广泛应用于图像识别、语音识别、自然语言处理等任务。Python中的TensorFlow和PyTorch等框架为神经网络的实现提供了强大的支持。

示例代码:(这里仅展示一个简单的神经网络模型构建,省略了数据加载和训练过程)

import tensorflow as tf  # 构建一个简单的神经网络模型  
model = tf.keras.Sequential([  tf.keras.layers.Dense(64, activation='relu', input_shape=(784,)),  tf.keras.layers.Dense(10, activation='softmax')  
])

五、现代算法:深度学习之卷积神经网络(CNN)

        卷积神经网络(CNN)是深度学习中一种非常重要的网络结构,特别适用于处理图像相关的任务,如图像分类、目标检测、图像分割等。CNN通过卷积层、池化层等结构,能够自动提取图像中的特征,并进行高效的分类和识别。

示例代码:(以TensorFlowKeras为例)

import tensorflow as tf  
from tensorflow.keras import datasets, layers, models  # 加载CIFAR10数据集  
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()  # 数据预处理  
train_images, test_images = train_images / 255.0, test_images / 255.0  # 构建CNN模型  
model = models.Sequential()  
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))  
model.add(layers.MaxPooling2D((2, 2)))  
model.add(layers.Conv2D(64, (3, 3), activation='relu'))  
model.add(layers.MaxPooling2D((2, 2)))  
model.add(layers.Conv2D(64, (3, 3), activation='relu'))  # 添加全连接层  
model.add(layers.Flatten())  
model.add(layers.Dense(64, activation='relu'))  
model.add(layers.Dense(10))  # 编译模型  
model.compile(optimizer='adam',  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),  metrics=['accuracy'])  # 训练模型  
model.fit(train_images, train_labels, epochs=10,   validation_data=(test_images, test_labels))

六、现代算法:深度学习之循环神经网络(RNN)

        循环神经网络(RNN)是另一种重要的深度学习模型,特别适用于处理序列数据,如文本、时间序列等。RNN通过内部的循环结构,能够捕捉序列中的时间依赖关系,并进行有效的预测和分类。

示例代码:(以TensorFlow和Keras为例,用于文本分类任务)

import tensorflow as tf  
from tensorflow.keras.preprocessing.text import Tokenizer  
from tensorflow.keras.preprocessing.sequence import pad_sequences  # 假设我们有一些文本数据和对应的标签  
texts = ["我喜欢吃苹果", "我不喜欢吃香蕉", "苹果很好吃", "香蕉有点甜"]  
labels = [1, 0, 1, 0]  # 假设1代表正面情感,0代表负面情感  # 文本预处理和编码  
tokenizer = Tokenizer(num_words=1000)  
tokenizer.fit_on_texts(texts)  
sequences = tokenizer.texts_to_sequences(texts)  
padded_sequences = pad_sequences(sequences)  # 构建RNN模型  
model = tf.keras.Sequential([  tf.keras.layers.Embedding(1000, 16),  tf.keras.layers.SimpleRNN(32),  tf.keras.layers.Dense(1, activation='sigmoid')  
])  # 编译模型  
model.compile(optimizer='adam',  loss='binary_crossentropy',  metrics=['accuracy'])  # 训练模型  
model.fit(padded_sequences, labels, epochs=10)

总结:

  •         本文通过探索从经典到现代的多种算法,展示了Python在算法实现中的强大能力。无论是快速排序、二分查找这样的经典算法,还是支持向量机、神经网络、卷积神经网络和循环神经网络等现代机器学习算法,Python都提供了丰富的库和工具来支持它们的实现。
  •         希望本文能够帮助读者更深入地理解Python在算法领域的应用,并激发您进一步探索和实践算法的热情。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/683027.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW伺服阀动静态测试系统

LabVIEW伺服阀动静态测试系统 基于LabVIEW开发了一套伺服阀动静态测试系统&#xff0c;提高伺服阀在电液伺服控制系统中的性能测试精度和效率。通过设计合理的液压系统、电控系统及软件系统&#xff0c;实现了伺服阀的动态和静态特性测试&#xff0c;采用流量-压力双闭环稳态控…

【C语言】数据结构#实现堆

目录 &#xff08;一&#xff09;堆 &#xff08;1&#xff09;堆区与数据结构的堆 &#xff08;二&#xff09;头文件 &#xff08;三&#xff09;功能实现 &#xff08;1&#xff09;堆的初始化 &#xff08;2&#xff09;堆的销毁 &#xff08;3&#xff09;插入数据 …

快速部署MES源码/万界星空科技开源MES

什么是开源MES软件&#xff1f; 开源MES软件是指源代码可以免费获取、修改和分发的MES软件。与传统的商业MES软件相比&#xff0c;开源MES软件具有更高的灵活性和可定制性。企业可以根据自身的需求对软件进行定制化开发&#xff0c;满足不同生产环境下的特定需求。 开源MES软件…

稳压二极管应用电路

稳压二极管比较特殊&#xff0c;基本结构与普通二极管一样&#xff0c;也有一个PN结。由于制造工艺的不同&#xff0c;当这种PN结处于反向击穿状态时&#xff0c;PN结不会损坏(普通二极管的PN结是会损坏)&#xff0c;在稳压二极管用来稳定电压时就是利用它的这一击穿特性。 由…

串行通信的艺术:深入解析UART与奇偶校验

发送数据位是电流传输吗&#xff1f; 在UART&#xff08;Universal Asynchronous Receiver/Transmitter&#xff09;通信中&#xff0c;发送数据位不直接以电流的形式传输。而是通过改变电压水平或者光信号&#xff08;在光纤通信中&#xff09;来表示不同的数据位&#xff08…

中小学信息学奥赛CSP-J认证 CCF非专业级别软件能力认证-入门组初赛模拟题第二套(阅读程序题)

CSP-J入门组初赛模拟题二 二、阅读程序题 (程序输入不超过数组或字符串定义的范围&#xff0c;判断题正确填√错误填X;除特殊说明外&#xff0c;判断题 1.5分&#xff0c;选择题3分&#xff0c;共计40分) 第一题 1 #include<bits/stdc.h> 2 using namespace std; 3 i…

探索微信小程序的奇妙世界:从入门到进阶

文章目录 一、什么是微信小程序1.1 简要介绍微信小程序的定义和特点1.2 解释小程序与传统应用程序的区别 二、小程序的基础知识2.1 微信小程序的架构2.2 微信小程序生命周期的理解2.3 探索小程序的目录结构和文件类型 三、小程序框架和组件3.1 深入了解小程序框架的核心概念和原…

【无标题】Matlab之annotation函数——创建图形注释(箭头、椭圆、矩形)

应用1&#xff1a;创建文本箭头注释 创建一个简单线图并向图窗添加文本箭头。用归一化的图窗坐标指定文本箭头位置&#xff0c;起点为 (0.3,0.6)&#xff0c;终点为 (0.5,0.5)。通过设置 String 属性指定文本说明。 figure plot(1:10) x [0.3 0.5]; y [0.6 0.5]; annotation…

ClickHouse--08--SQL DDL 操作

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 SQL DDL 操作1 创建库2 查看数据库3 删除库4 创建表5 查看表6 查看表的定义7 查看表的字段8 删除表9 修改表9.1 添加列9.2 删除列9.3 清空列9.4 给列修改注释9.5 修…

C语言第二十四弹---指针(八)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 指针 1、数组和指针笔试题解析 1.1、字符数组 1.1.1、代码1&#xff1a; 1.1.2、代码2&#xff1a; 1.1.3、代码3&#xff1a; 1.1.4、代码4&#xff1a; 1…

thinkphp6入门(20)-- 如何上传图片、文件

1. 配置文件 设置上传的路径 对应文件夹 2. 前端 <div class"card-body"><h1 class"card-title">用户头像</h1><img src"../../../uploads/{$user.avatar_photo_path}" alt"avatar" height"100"/&g…

Windows 安装和连接使用 PgSql数据库

一. PostgreSQL 安装详细步骤 下载地址&#xff1a;https://www.enterprisedb.com/postgresql-tutorial-resources-training-1?uuidd732dc13-c15a-484b-b783-307823940a11&campaignIdProduct_Trial_PostgreSQL_16 1. 双击打开安装包 2. 选择安装目录 3. 选择安装组件 4.…

windows10系统转换成为window7s出现蓝屏错误ax000000A5

状况的描述&#xff1a; 由于电脑的基础性能有一些不匹配&#xff0c;想把windows10系统转换成为windows7的系统进行处理&#xff0c;利用widowspe的装机系统对其进行处理&#xff0c;但是对其进行相关的安装&#xff0c;目前在网络上搜索的相关文章分析的原因&#xff1a; 原…

蓝桥杯:C++排序

排序 排序和排列是算法题目常见的基本算法。几乎每次蓝桥杯软件类大赛都有题目会用到排序或排列。常见的排序算法如下。 第(3)种排序算法不是基于比较的&#xff0c;而是对数值按位划分&#xff0c;按照以空间换取时间的思路来排序。看起来它们的复杂度更好&#xff0c;但实际…

政安晨:梯度与导数~示例演绎《机器学习·神经网络》的高阶理解

这篇文章确实需要一定的数学基础&#xff0c;第一次接触的小伙伴可以先看一下我示例演绎这个主题的前两篇文章&#xff1a; 示例演绎机器学习中&#xff08;深度学习&#xff09;神经网络的数学基础——快速理解核心概念&#xff08;一&#xff09;&#xff1a; 政安晨&#…

蓝桥杯嵌入式学习记录——按键的使用

目录 一、按键原理简介 二、cubeMX的配置 三、按键的短按代码 四、按键的长按代码 一、按键原理简介 在STM32中&#xff0c;按键连接通常使用GPIO&#xff08;通用输入/输出&#xff09;端口来实现。当按键未被按下时&#xff0c;GPIO端口处于高电平状态&#xff08;即1&am…

springboot188基于spring boot的校园商铺管理系统

简介 【毕设源码推荐 javaweb 项目】基于springbootvue 的 适用于计算机类毕业设计&#xff0c;课程设计参考与学习用途。仅供学习参考&#xff0c; 不得用于商业或者非法用途&#xff0c;否则&#xff0c;一切后果请用户自负。 看运行截图看 第五章 第四章 获取资料方式 **项…

高德地图上绘制热力图的方法

百度地图和高德地图的JavaScript API都提供了热力图的绘制方法&#xff0c;都是将热力图作为新的图层&#xff0c;叠加到地图上。但是百度地图的经纬度体系与我们的经纬度存在偏差&#xff0c;高德的与我们相符&#xff0c;应当使用高德地图JavaScript API。 因为是JavaScript…

COM初体验——新建文档并写入内容。

我想在程序里和Word交互。老师跟我说不要学COM&#xff0c;因为它已经过时了。但是我不想再把代码移植到C#上面&#xff0c;然后用VSTO——已经用了std::unordered_set&#xff01;因为我使用了Copilot&#xff0c;结合我的思考&#xff0c;写了下面的代码&#xff1a; #impor…

【Langchain Agent研究】SalesGPT项目介绍(四)

【Langchain Agent研究】SalesGPT项目介绍&#xff08;三&#xff09;-CSDN博客 github地址&#xff1a;GitHub - jerry1900/SalesGPT: Context-aware AI Sales Agent to automate sales outreach. 上节课&#xff0c;我们主要介绍了SalesGPT的类属性和它最重要的类方法f…