基于轻量级卷积神经网络模型MobileNet开发构建基于GTSRB数据集的道路交通标识识别系统

相信经常需要开车出行的人对于各种各样的道路交通标识定是不陌生的,但是对于经常不开车的人来说生活中出现的形形色色的道路交通标识就未必都能认出来了,本文的主要目的就是想要基于CNN来开发构建道路交通标识识别分析系统,实现看图识标,这里我们选择的是德国的道路交通标识数据集GTSRB,关于该数据集在我前面的博文中有很详细的操作使用说明,如果有需要的话可以自行移步阅读即可。

《Python实现交通标志牌(GTSRB数据集)解析处理》

这里就不再对数据集的处理进行介绍了,直接步入正文。

首先看下实例效果:

接下来简单看下数据集:

这里我们选择的MobileNetv1的模型,MobileNet是一种轻量级的卷积神经网络模型,旨在在计算资源受限的移动设备上实现高效的图像分类和目标检测。其主要原理如下:

Depthwise Separable Convolution:MobileNet使用Depthwise Separable Convolution来减少参数量和计算量。这是一种将标准卷积分解成深度卷积(Depthwise Convolution)和逐点卷积(Pointwise Convolution)两个步骤的方法。深度卷积仅对输入的每个通道进行卷积,减少了卷积核的数量。逐点卷积使用1x1卷积核来将深度卷积的输出转化为期望的特征维度。这种分解有效降低了参数量,减少了计算量。

网络结构设计:MobileNet采用了基于深度可分离卷积的轻量网络结构。网络主要由一系列重复的卷积块和下采样层构成。卷积块包含了深度卷积、逐点卷积和激活函数。下采样层通常使用步长较大的深度可分离卷积来减少特征图的尺寸。通过这种设计,MobileNet减少了网络的深度和参数量,从而在较小的设备上实现了高效的推理。

优点:

轻量高效:MobileNet采用了Depthwise Separable Convolution和轻量网络结构,大大减少了参数量和计算量,使得它在计算资源受限的设备上运行速度快。
网络结构可定制:MobileNet的网络结构可以根据不同的需求和资源限制进行调整和定制。可以通过调整深度可分离卷积的层数和通道数来平衡准确性和模型大小。
缺点:

精度受限:由于网络结构的轻量化和参数减少,MobileNet相对于大型网络模型,如ResNet和Inception等,可能牺牲了一定的精度。
对复杂数据集的泛化能力有限:MobileNet在处理复杂数据集上的泛化能力可能相对较差,适用于较简单的图像分类和目标检测任务。
需要根据实际应用场景和资源限制来权衡使用MobileNet的优势和劣势。在资源受限的设备上,如移动设备或嵌入式系统,MobileNet是一种高效的选择,但在对准确性和复杂性要求较高的任务上,可能需要考虑更为复杂的网络结构。

MobileNetv1模型核心代码实现如下所示:

def MobileNet(classes=43):img_input = Input(shape=(224,224,3))x = convBlock(img_input, 32, 1.0, strides=(2, 2))x = dwConvBlock(x, 64, 1.0, 1, block_id=1)x = dwConvBlock(x, 128, 1.0, 1, strides=(2, 2), block_id=2)x = dwConvBlock(x, 128, 1.0, 1, block_id=3)x = dwConvBlock(x, 256, 1.0, 1, strides=(2, 2), block_id=4)x = dwConvBlock(x, 256, 1.0, 1, block_id=5)x = dwConvBlock(x, 512, 1.0, 1, strides=(2, 2), block_id=6)x = dwConvBlock(x, 512, 1.0, 1, block_id=7)x = dwConvBlock(x, 512, 1.0, 1, block_id=8)x = dwConvBlock(x, 512, 1.0, 1, block_id=9)x = dwConvBlock(x, 512, 1.0, 1, block_id=10)x = dwConvBlock(x, 512, 1.0, 1, block_id=11)x = dwConvBlock(x, 1024, 1.0, 1, strides=(2, 2), block_id=12)x = dwConvBlock(x, 1024, 1.0, 1, block_id=13)x = GlobalAveragePooling2D()(x)shape = (1, 1, 1024)x = Reshape(shape)(x)x = Dropout(1e-3)(x)x = Conv2D(classes, (1, 1), padding="same")(x)x = Activation("softmax")(x)x = Reshape((classes,))(x)inputs = img_inputmodel = Model(inputs, x)return model

等待训练完成后我们对其训练结果进行可视化展示。核心代码实现如下所示:

# 准确率曲线
plt.clf()
plt.figure(figsize=(12, 6))
plt.plot(train, label="Train Acc Cruve")
plt.plot(test, label="Test Acc Cruve")
plt.title("Train-Test Accuracy Cruve")
plt.legend(loc="upper center", ncol=2)
plt.savefig("train_acc.png")# 损失值曲线
plt.clf()
plt.figure(figsize=(12, 6))
plt.plot(train, label="Train Loss Cruve")
plt.plot(test, label="Test Loss Cruve")
plt.title("Train-Test Loss Cruve")
plt.legend(loc="upper center", ncol=2)
plt.savefig("train_loss.png")

结果输出如下所示:

【loss曲线】

【accuracy曲线】

综合来看模型的效果已经是非常好的了。

感兴趣的话也都可以自行动手实践下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/682706.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

谷歌浏览器安装扩展程序axure-chrome-extension

注: 文末附扩展附件:axure-chrome-extension_v0.7.0.crx 1、安装扩展程序axure-chrome-extension 找到axure-chrome-extension.crx,把axure-chrome-extension.crx后缀改为zip,然后解压,得到一个文件夹 2、打开谷歌浏览…

docker (二)-yum二进制部署

yum安装docker(Linux) 安装环境:CentOS 7.9 一 如果之前安装了旧版docker,请先删除 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotat…

枚举知识点解析

枚举是什么?枚举就是列举, 将东西一一列举出来。 生活中有许多地方需要用到枚举, 比如一年有12个月,一星期有7天, 这些都需要进行枚举。 那么, 如何进行枚举的定义呢? 如下 枚举中的值是一种…

Shell 学习笔记(二)-输入输出重定向

输入输出重定向 一 linux 的标准输入与输出 设备设备名文件描述符类型键盘/dev/stdin0标准输入键盘/dev/stdout1标准输出显示器/dev/stderr2标准错误输出 输入重定向:是指不使用系统提供的标准输入端口,而进行重新的指定。换言之,输入重定…

ubuntu22.04@laptop OpenCV Get Started: 008_image_filtering_using_convolution

ubuntu22.04laptop OpenCV Get Started: 008_image_filtering_using_convolution 1. 源由2. convolution应用Demo2.1 C应用Demo2.2 Python应用Demo 3. 重点分析3.1 identity矩阵3.2 all ones 5x5矩阵3.3 blur 5x5矩阵3.4 GaussianBlur 5x5矩阵3.5 medianBlur 5x5矩阵3.6 Sharpe…

018_配置测试微服务基本的CRUD功能

文章目录 整合mybatis plus01 - 导入依赖02 - 配置2.1 - 配置数据源2.1.1 - 导入数据库驱动插曲:调整一下common module当中的异常报错2.1.2 - 配置数据源application.yaml2.2 - 配置mybatis-plus信息配置主键自增单元测试测试过程我们想要测试一下逆向工程生成的代码。 整合m…

Spring 用法学习总结(一)之基于 XML 注入属性

百度网盘: 👉 Spring学习书籍链接 Spring学习 1 Spring框架概述2 Spring容器3 基于XML方式创建对象4 基于XML方式注入属性4.1 通过set方法注入属性4.2 通过构造器注入属性4.3 使用p命名空间注入属性4.4 注入bean与自动装配4.5 注入集合4.6 注入外部属性…

STL - 容器适配器

1、容器适配器 1.1、什么是适配器 适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口 1.2、STL标准库中stack和queue的底层结构 虽然stack和queue中也可…

C# Winform .net6自绘的圆形进度条

using System; using System.Drawing; using System.Drawing.Drawing2D; using System.Windows.Forms;namespace Net6_GeneralUiWinFrm {public class CircularProgressBar : Control{private int progress 0;private int borderWidth 20; // 增加的边框宽度public int Progr…

CTFshow web(php文件上传155-158)

web155 老样子,还是那个后端检测。 知识点: auto_append_file 是 PHP 配置选项之一,在 PHP 脚本执行结束后自动追加执行指定的文件。 当 auto_append_file 配置被设置为一个文件路径时,PHP 将在执行完脚本文件的所有代码后&…

收集域名信息

进行渗透测试之前,最重要的一步就是信息收集,在这个阶段,我们要尽可能 地收集目标组织的信息。所谓“知己知彼,百战不殆”,我们越是了解测试目标,测试 的工作就越容易。在信息收集中,最主要的就是收集服务器…

Shell - 学习笔记 - 2.13 - Shell数组拼接,Shell数组合并

所谓 Shell 数组拼接(数组合并),就是将两个数组连接成一个数组。 拼接数组的思路是:先利用或*,将数组扩展成列表,然后再合并到一起。具体格式如下: array_new(${array1[]} ${array2[]}) array…

探索IDE的世界:什么是IDE?以及适合新手的IDE推荐

引言 在编程的世界里,集成开发环境(IDE)是我们日常工作的重要工具。无论是初学者还是经验丰富的开发者,一个好的IDE都能极大地提高我们的编程效率。那么,什么是IDE呢?对于新手来说,又应该选择哪…

OpenGL-ES 学习(2)---- DepthTest

深度测试 OpenGL-ES 深度测试是指在片段着色器执行之后,利用深度缓冲区所保存的深度值决定当前片段是否被丢弃的过程 深度缓冲区通常和颜色缓冲区有着相同的宽度和高度,一般由窗口系统自动创建并将其深度值存储为 16、 24 或 32 位浮点数。(注意只保存…

YoloV8改进策略:BackBone改进|Mamba-UNet改进YoloV8,打造全新的Yolo-Mamba网络

摘要 本文尝试使用Mamba主干网络替换YoloV8的主干网络,打造最新的Yolo-Mamba网络。 论文:《Mamba-UNet:用于医学图像分割的类似UNet的纯视觉Mamba网络》 在医学图像分析的最新进展中,卷积神经网络(CNN)和视觉转换器(ViT)都取得了显著的基准成绩。前者通过其卷积操作…

红队笔记Day3-->隧道上线不出网机器

昨天讲了通过代理的形式(端口转发)实现了上线不出网的机器,那么今天就来讲一下如何通过隧道上线不出网机器 目录 1.网络拓扑 2.开始做隧道?No!!! 3.icmp隧道 4.HTTP隧道 5.SSH隧道 1.什么…

HarmonyOS鸿蒙学习基础篇 - 自定义组件(一)

前言 在ArkUI中,UI显示的内容均为组件,由框架直接提供的称为系统组件,由开发者定义的称为自定义组件。在进行 UI 界面开发时,通常不是简单的将系统组件进行组合使用,而是需要考虑代码可复用性、业务逻辑与UI分离&#…

【Linux】yum软件包管理器

目录 Linux 软件包管理器 yum 什么是软件包 Linux安装软件 查看软件包 关于rzsz Linux卸载软件 查看yum源 扩展yum源下载 Linux开发工具 vim编辑器 上述vim三种模式之间的切换总结: 命令模式下,一些命令: vim配置 Linux 软件包管理…

项目访问量激增该如何应对

✨✨ 欢迎大家来到喔的嘛呀的博客✨✨ 🎈🎈希望这篇博客对大家能有帮助🎈🎈 目录 引言 一. 优化数据库 1.1 索引优化 1.2 查询优化 1.3 数据库设计优化 1.4 事务优化 1.5 硬件优化 1.6 数据库配置优化 二. 增加服务器资源…

JVM(4)原理篇

1 栈上的数据存储 在Java中有8大基本数据类型: 这里的内存占用,指的是堆上或者数组中内存分配的空间大小,栈上的实现更加复杂。 以基础篇的这段代码为例: Java中的8大数据类型在虚拟机中的实现: boolean、byte、char…