详解CC++内存管理(new和delete)

文章目录

  • 写在前面
  • 1. C&C++内存分布
  • 2. C语言中动态内存管理方式:malloc/calloc/realloc/free
  • 3. C++内存管理方式(语法)
    • 3.1 new/delete操作内置类型
    • 3.2 new和delete操作自定义类型
  • 4. new和delete的实现原理
    • 4.1 operator new与operator delete函数
    • 4.2 实现原理
      • 4.2.1 内置类型
      • 4.2.2 自定义类型
  • 5. 定位new表达式(placement-new)(了解)

写在前面

本篇文章先讨了C/C++程序中的内存分布,并简单介绍了各个内存段的作用和特点。在此基础上,又着重讨论了C语言和C++语言中的动态内存管理方式,包括malloc()、free()等C语言函数以及new和delete等C++语言操作符。进一步探讨了operator new和operator delete函数在C++中的作用和使用方式,并揭示了new和delete的实现原理。最后,对定位new表达式(placement-new)进行了解析,介绍了它在特定场景下的应用及实现原理。

1. C&C++内存分布

在这里插入图片描述
上面图片介绍了C/C++程序中的内存分布,并详细介绍了各个内存段的作用和特点。
下面我们通过一段代码和相关问题,来深入理解C/C++程序中的内存分布。

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{static int staticVar = 1;int localVar = 1;int num1[10] = { 1, 2, 3, 4 };char char2[] = "abcd";const char* pChar3 = "abcd";int* ptr1 = (int*)malloc(sizeof(int) * 4);int* ptr2 = (int*)calloc(4, sizeof(int));int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);free(ptr1);free(ptr3);
/* 1. 选择题:选项: A.栈  B.堆  C.数据段(静态区)  D.代码段(常量区)globalVar在哪里?__c__   staticGlobalVar在哪里?__c__staticVar在哪里?__c__   localVar在哪里?__a__num1 在哪里?__a__char2在哪里?____       *char2在哪里?___pChar3在哪里?____      *pChar3在哪里?____ptr1在哪里?____        *ptr1在哪里?____
2. 填空题:sizeof(num1) = ____;  sizeof(char2) = ____;      strlen(char2) = ____;sizeof(pChar3) = ____;      strlen(pChar3) = ____;sizeof(ptr1) = ____;
3. sizeof 和 strlen 区别?
}*/

在这里插入图片描述

2. C语言中动态内存管理方式:malloc/calloc/realloc/free

C语言中动态内存管理方式:malloc/calloc/realloc/free的详细介绍,有兴趣的读者可以参考之前写的文章:动态内存管理(malloc calloc realloc free)— C语言[点击蓝色字体跳转],这里就不在赘述。

3. C++内存管理方式(语法)

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦。例如:在C语言中使用 malloc 和 free 进行内存分配和释放时,需要手动计算申请内存空间的大小,并且需要对返回值进行强制类型转换,容易出错。

因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。在C++中,它们不仅可以用于内置类型(例如 int、double 等),还可以用于自定义类型(例如类、结构体等)。下面我们来一一介绍。

3.1 new/delete操作内置类型

int main()
{// 动态申请一个int类型的空间int* pa = new int;// 动态申请一个int类型的空间并初始化为10int* pb = new int(10);// 动态申请10个int类型的空间int* nums1 = new int[10];// 动态申请10个int类型的空间,并用{1, 2, 3, 4}初始化,不完全初始化,剩下的默认初始化为0。int* nums2 = new int[10] {1, 2, 3, 4};delete pa;delete pb;delete[] nums1;delete[] nums2;return 0;
}

在这里插入图片描述

注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用new[]和delete[],注意:匹配起来使用。

3.2 new和delete操作自定义类型

class A
{
public:A(int a = 0):_a(a){cout << "A(int a = 0)" << endl;}~A(){cout << "~A()" << endl;}
private:int _a;
};int main() 
{//malloc 和 new 最大的区别是对于自定义类型除了会开空间以外,new 还会调用构造函数完成对对象的初始化A* pa1 = new A;A* pa2 = (A*)malloc(sizeof(A));//free 和 delete 最大的区别是对于自定义类型除了会释放空间以外,还会调用析构函数来完成对对象中资源的清理delete pa1;free(pa2);return 0;
}

在这里插入图片描述
注意:在申请自定义类型的空间时,new会调用构造函数,delete会调用析构函数,而malloc与free不会。 new/delete 和 malloc/free对于内置类型 是几乎是一样的,只是用法不同罢了。

4. new和delete的实现原理

4.1 operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符operator new 和operator delete
系统提供的全局函数new在底层调用operator new全局函数来申请空间,delete在底层通过operator delete全局函数来释放空间。
在这里插入图片描述
通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。
operator new 和operator delete是系统提供的全局函数,因此可以显示的调用,平常不会这样使用(了解)。
在这里插入图片描述

4.2 实现原理

4.2.1 内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:

  1. new/delete申请和释放的是单个元素的空间,new[]和delete[]申请和释放的是连续空间。
    在这里插入图片描述

  2. new在申请空间失败时会抛异常,malloc会返回NULL。
    在这里插入图片描述

4.2.2 自定义类型

new的原理:

  1. 调用operator new函数申请空间。
  2. 在申请的空间上执行构造函数,完成对象的构造。
    在这里插入图片描述

delete的原理:

  1. 在空间上执行析构函数,完成对象中资源的清理工作。
  2. 调用operator delete函数释放对象的空间。
    在这里插入图片描述

new T[N]的原理:

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对象空间的申请。
  2. 在申请的空间上执行N次构造函数。
    在这里插入图片描述

delete[]的原理:

  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理。
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释放空间。
    在这里插入图片描述

5. 定位new表达式(placement-new)(了解)

定位new表达式在实际中一般是配合内存池使用。因为内存池分配出的内存没有初始化,所以如果是自定义类型的对象,需要使用new的定义表达式进行显示调构造函数进行初始化。
在这里插入图片描述
至此,本片文章就结束了,若本篇内容对您有所帮助,请三连点赞,关注,收藏支持下。

创作不易,白嫖不好,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!

如果本篇博客有任何错误,请批评指教,不胜感激 !!!
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/681525.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构——6.2 图的存储与基本操作

6.2 图的存储与基本操作 概念 图的存储 邻接矩阵存有向图和无向图 根据邻接矩阵求度&#xff1a; 无向图&#xff1a;第i个结点的度 第i行 (或第列) 的非零元素个数 有向图&#xff1a; 第i个结点的出度 第i行的非零元素个数 第i个结点的入度 第i列的非零元素个数 第i个结…

Stable Diffusion教程——stable diffusion基础原理详解与安装秋叶整合包进行出图测试

前言 在2022年&#xff0c;人工智能创作内容&#xff08;AIGC&#xff09;成为了AI领域的热门话题之一。在ChatGPT问世之前&#xff0c;AI绘画以其独特的创意和便捷的创作工具迅速走红&#xff0c;引起了广泛关注。随着一系列以Stable Diffusion、Midjourney、NovelAI等为代表…

linux信号机制[一]

目录 信号量 时序问题 原子性 什么是信号 信号如何产生 引入 信号的处理方法 常见信号 如何理解组合键变成信号呢&#xff1f; 如何理解信号被进程保存以及信号发送的本质&#xff1f; 为什么要有信号 信号怎么用&#xff1f; 样例代码 core文件有什么用呢&#…

Docker基础与持续集成

docker 基础知识&#xff1a; docker与虚拟机 !左边为虚拟机&#xff0c;右边为docker环境 – Server :物理机服务器Host OS &#xff1a;构建的操作系统Hypervisor &#xff1a;一种虚拟机软件&#xff0c;装了之后才能虚拟化操作系统Guest OS &#xff1a;虚拟化的操作系统…

自动驾驶轨迹规划之kinodynamic planning

欢迎大家关注我的B站&#xff1a; 偷吃薯片的Zheng同学的个人空间-偷吃薯片的Zheng同学个人主页-哔哩哔哩视频 (bilibili.com) 本文PPT来自深蓝学院《移动机器人的运动规划》 目录 1.kinodynamic的背景 2. old-school pipline 3.example 1.kinodynamic的背景 kinodynami…

java之jvm详解

JVM内存结构 程序计数器 Program Counter Register程序计数器(寄存器) 程序计数器在物理层上是通过寄存器实现的 作用&#xff1a;记住下一条jvm指令的执行地址特点 是线程私有的(每个线程都有属于自己的程序计数器)不会存在内存溢出 虚拟机栈(默认大小为1024kb) 每个线…

LeetCode、739. 每日温度【中等,单调栈】

文章目录 前言LeetCode、739. 每日温度【中等&#xff0c;单调栈】题目链接及分类思路单调栈 资料获取 前言 博主介绍&#xff1a;✌目前全网粉丝2W&#xff0c;csdn博客专家、Java领域优质创作者&#xff0c;博客之星、阿里云平台优质作者、专注于Java后端技术领域。 涵盖技…

二次元自适应动态引导页

源码介绍 二次元自适应动态引导页&#xff0c;HTMLJSCSS&#xff0c;记事本修改&#xff0c;上传到服务器即可&#xff0c;也可以本地双击index.html查看效果 下载地址 https://wfr.lanzout.com/isRem1o7bfcb

MockServer 服务框架设计

大部分现有的 mock 工具只能满足 HTTP 协议下简单业务场景的使用。但是面对一些复杂的业务场景就显得捉襟见肘&#xff0c;比如对 socket 协议的应用进行 mock&#xff0c;或者对于支付接口的失败重试的定制化 mock 场景。 为解决上述问题&#xff0c;霍格沃兹测试学院设计并研…

零基础学编程怎么入手,中文编程工具构件箱之多页面板构件用法教程,系统化的编程视频教程上线

零基础学编程怎么入手&#xff0c;中文编程工具构件箱之多页面板构件用法教程&#xff0c;系统化的编程视频教程上线 一、前言 今天给大家分享的中文编程开发语言工具资料如下&#xff1a; 编程入门视频教程链接 http://​ https://edu.csdn.net/course/detail/39036 ​ …

下一代块存储重新定义任务关键型存储架构

HPE 宣布全面推出基于 HPE Alletra Storage MP 构建的 HPE GreenLake for Block Storage 第 3 版&#xff0c;提供业界首款分解式横向扩展块存储&#xff0c;并提供 100% 数据可用性保证。这种独特的块存储产品由共享一切存储架构提供支持&#xff0c;并通过 HPE GreenLake 云平…

(算法3)二分查找

朴素二分查找 最直接的二分查找&#xff0c;有序&#xff0c;查找数组中的某个元素 这种方法是有局限性的&#xff1a;只可以查找升序的数组&#xff0c;且要查找的元素是一个 注意&#xff1a;mid(中点&#xff09;的计算应该是&#xff1a;left(right-left)/2 (个数是偶数时…

接口测试06 -- pytest接口自动化封装Loggin实战

1. 接口关键字封装 1.1 基本概念 接口关键字封装是指:将接口测试过程中常用的操作、验证封装成可复用的关键字(或称为函数、方法),以提高测试代码的可维护性和可复用性。 1.2 常见的接口关键字封装方式 1. 发送请求:封装一个函数,接受参数如请求方法、URL、请求头、请求…

基于Spring Boot的美容院管理系统设计与实现,计算机毕业设计(带源码+论文)

源码获取地址&#xff1a; 码呢-一个专注于技术分享的博客平台一个专注于技术分享的博客平台,大家以共同学习,乐于分享,拥抱开源的价值观进行学习交流http://www.xmbiao.cn/resource-details/1757434902285987841

洛谷数组P1319压缩技术

做题思路&#xff1a; 这里表示输入的第一个数字N为N*N的方阵&#xff0c;后面的数字表示连续输入几个1或者0&#xff0c;定义result表示实际输出的数字0或1&#xff08;result输出0或1&#xff0c;可以用绝对值abs我们初始化result为0&#xff0c;我们将它-1后再取绝对值就可以…

二、ClickHouse简介

ClickHouse简介 前言一、行式存储二、DBMS功能三、多样化引擎四、高吞吐写入能力五、数据分区与线程级并行六、场景七、特定版本 前言 ClickHouse 是俄罗斯的 Yandex 于 2016 年开源的列式存储数据库&#xff08;DBMS&#xff09;&#xff0c;使用 C 语言编写&#xff0c;主要…

[NSSCTF]-Web:[SWPUCTF 2021 新生赛]easyrce解析

先看网页 代码审计&#xff1a; error_reporting(0); &#xff1a;关闭报错&#xff0c;代码的错误将不会显示 highlight_file(__FILE__); &#xff1a;将当前文件的源代码显示出来 eval($_GET[url]); &#xff1a;将url的值作为php代码执行 解题&#xff1a; 题目既然允许…

片上网络NoC(4)——直连拓扑

目录 一、前言 二、直连拓扑 三、总结 一、前言 本文中&#xff0c;我们将继续介绍片上网络中拓扑相关的内容&#xff0c;主要介绍直连拓扑&#xff0c;在此之前&#xff0c;我们已经介绍过了拓扑的指标&#xff0c;这将是继续阅读本文的基础&#xff0c;还没有了解相关内容…

算法刷题:盛水最多的容器

盛水最多的容器 .习题链接题目题目解析算法原理我的答案 . 习题链接 盛水最多的容器 题目 题目解析 VH*W h为左右两边低的一边,w为左右两边之间的距离 算法原理 定义两个指针 left0,rightn-1; left从左往右对数组进行遍历,right从右往左进行遍历 遍历的过程中,每一次都需要…

Hive的小文件问题

目录 一、小文件产生的原因 二、小文件的危害 三、小文件的解决方案 3.1 小文件的预防 3.1.1 减少Map数量 3.1.2 减少Reduce的数量 3.2 已存在的小文件合并 3.2.1 方式一&#xff1a;insert overwrite (推荐) 3.2.2 方式二&#xff1a;concatenate 3.2.3 方式三&#xff…