Spark编程实验六:Spark机器学习库MLlib编程

目录

一、目的与要求

二、实验内容

三、实验步骤

1、数据导入

2、进行主成分分析(PCA)

3、训练分类模型并预测居民收入 

4、超参数调优

四、结果分析与实验体会


一、目的与要求

1、通过实验掌握基本的MLLib编程方法;
2、掌握用MLLib解决一些常见的数据分析问题,包括数据导入、成分分析和分类和预测等。

二、实验内容

1.数据导入

        从文件中导入数据,并转化为DataFrame。

2、进行主成分分析(PCA

        对6个连续型的数值型变量进行主成分分析。PCA(主成分分析)是通过正交变换把一组相关变量的观测值转化成一组线性无关的变量值,即主成分的一种方法。PCA通过使用主成分把特征向量投影到低维空间,实现对特征向量的降维。请通过setK()方法将主成分数量设置为3,把连续型的特征向量转化成一个3维的主成分。

3、训练分类模型并预测居民收入

        在主成分分析的基础上,采用逻辑斯蒂回归,或者决策树模型预测居民收入是否超过50K;对Test数据集进行验证。

4、超参数调优

        利用CrossValidator确定最优的参数,包括最优主成分PCA的维数、分类器自身的参数等。

附:数据集:

        下载Adult数据集(http://archive.ics.uci.edu/ml/datasets/Adult)。数据从美国1994年人口普查数据库抽取而来,可用来预测居民收入是否超过50K$/year。该数据集类变量为年收入是否超过50k$,属性变量包含年龄、工种、学历、职业、人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。

Index.txt文件内容: 

Index of adult

02 Dec 1996      140 Index
10 Aug 1996  3974305 adult.data
10 Aug 1996     4267 adult.names
10 Aug 1996  2003153 adult.test

三、实验步骤

1、数据导入

        从文件中导入数据,并转化为DataFrame。

//导入需要的包
from pyspark.ml.feature import PCA 
from pyspark.sql import Row
from pyspark.ml.linalg import Vector,Vectors
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml import Pipeline,PipelineModel
from pyspark.ml.feature import IndexToString, StringIndexer, VectorIndexer,HashingTF, Tokenizer
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.classification import LogisticRegressionModel
from pyspark.ml.classification import BinaryLogisticRegressionSummary, LogisticRegression
from pyspark.sql import functions
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
//获取训练集测试集(需要对测试集进行一下处理,adult.data.txt的标签是>50K和<=50K,而adult.test.txt的标签是>50K.和<=50K.,这里是把adult.test.txt标签的“.”去掉了。另外,确保adult.data.txt和adult.test.txt最后没有多一个空格。)
>>> def f(x):rel = {}rel['features']=Vectors.dense(float(x[0]),float(x[2]),float(x[4]),float(x[10]),float(x[11]),float(x[12]))rel['label'] = str(x[14])return rel>>> df = spark.sparkContext.textFile("file:///usr/local/spark/adult.data.txt").map(lambda line: line.split(',')).map(lambda p: Row(**f(p))).toDF() 
df: pyspark.sql.DataFrame = [features: vector, label: string]>>> test = spark.sparkContext.textFile("file:///usr/local/spark/adult.test.txt").map(lambda line: line.split(',')).map(lambda p: Row(**f(p))).toDF()
test: pyspark.sql.DataFrame = [features: vector, label: string]

2、进行主成分分析(PCA)

        对6个连续型的数值型变量进行主成分分析。PCA(主成分分析)是通过正交变换把一组相关变量的观测值转化成一组线性无关的变量值,即主成分的一种方法。PCA通过使用主成分把特征向量投影到低维空间,实现对特征向量的降维。请通过setK()方法将主成分数量设置为3,把连续型的特征向量转化成一个3维的主成分。

        构建PCA模型,并通过训练集进行主成分分解,然后分别应用到训练集和测试集。

>>> pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures").fit(df)
pca: pyspark.ml.feature.PCAModel = PCA_4a668f4a52beccad9526>>> result = pca.transform(df)
result: pyspark.sql.DataFrame = [features: vector, label: string, pcaFeatures: vector]>>> testdata = pca.transform(test)
testdata: pyspark.sql.DataFrame = [features: vector, label: string, pcaFeatures: vector] >>> result.show(truncate=False)
+------------------------------------+------+-----------------------------------------------------------+
|features                            |label |pcaFeatures                                                |
+------------------------------------+------+-----------------------------------------------------------+
|[39.0,77516.0,13.0,2174.0,0.0,40.0] | <=50K|[77516.0654328193,-2171.6489938846585,-6.9463604765987625] |
|[50.0,83311.0,13.0,0.0,0.0,13.0]    | <=50K|[83310.99935595776,2.526033892790795,-3.38870240867987]    |
|[38.0,215646.0,9.0,0.0,0.0,40.0]    | <=50K|[215645.99925048646,6.551842584546877,-8.584953969073675]  |
|[53.0,234721.0,7.0,0.0,0.0,40.0]    | <=50K|[234720.99907961802,7.130299808613842,-9.360179790809983]  |
|[28.0,338409.0,13.0,0.0,0.0,40.0]   | <=50K|[338408.9991883054,10.289249842810678,-13.36825187163136]  |
|[37.0,284582.0,14.0,0.0,0.0,40.0]   | <=50K|[284581.9991669545,8.649756033705797,-11.281731333793557]  |
|[49.0,160187.0,5.0,0.0,0.0,16.0]    | <=50K|[160186.99926937037,4.86575372118689,-6.394299355794958]   |
|[52.0,209642.0,9.0,0.0,0.0,45.0]    | >50K |[209641.99910851708,6.366453450443119,-8.38705558572268]   |
|[31.0,45781.0,14.0,14084.0,0.0,50.0]| >50K |[45781.42721110636,-14082.596953729324,-26.3035091053821]  |
|[42.0,159449.0,13.0,5178.0,0.0,40.0]| >50K |[159449.15652342222,-5173.151337268416,-15.351831002507415]|
|[37.0,280464.0,10.0,0.0,0.0,80.0]   | >50K |[280463.9990886109,8.519356755954709,-11.188000533447731]  |
|[30.0,141297.0,13.0,0.0,0.0,40.0]   | >50K |[141296.99942061215,4.2900981666986855,-5.663113262632686] |
|[23.0,122272.0,13.0,0.0,0.0,30.0]   | <=50K|[122271.9995362372,3.7134109235547164,-4.887549331279983]  |
|[32.0,205019.0,12.0,0.0,0.0,50.0]   | <=50K|[205018.99929839539,6.227844686207229,-8.176186180265503]  |
|[40.0,121772.0,11.0,0.0,0.0,40.0]   | >50K |[121771.99934864056,3.6945287780540603,-4.918583567278704] |
|[34.0,245487.0,4.0,0.0,0.0,45.0]    | <=50K|[245486.99924622496,7.4601494174606815,-9.75000324288002]  |
|[25.0,176756.0,9.0,0.0,0.0,35.0]    | <=50K|[176755.9994399727,5.370793765347799,-7.029037217537133]   |
|[32.0,186824.0,9.0,0.0,0.0,40.0]    | <=50K|[186823.99934678187,5.675541056422981,-7.445605003141515]  |
|[38.0,28887.0,7.0,0.0,0.0,50.0]     | <=50K|[28886.99946951148,0.8668334219437271,-1.2969921640115318] |
|[43.0,292175.0,14.0,0.0,0.0,45.0]   | >50K |[292174.9990868344,8.87932321571431,-11.599483225618247]   |
+------------------------------------+------+-----------------------------------------------------------+
only showing top 20 rows>>> testdata.show(truncate=False) 
+------------------------------------+------+-----------------------------------------------------------+
|features                            |label |pcaFeatures                                                |
+------------------------------------+------+-----------------------------------------------------------+
|[25.0,226802.0,7.0,0.0,0.0,40.0]    | <=50K|[226801.99936708904,6.893313042325555,-8.993983821758796]  |
|[38.0,89814.0,9.0,0.0,0.0,50.0]     | <=50K|[89813.99938947687,2.7209873244764906,-3.6809508659704675] |
|[28.0,336951.0,12.0,0.0,0.0,40.0]   | >50K |[336950.99919122306,10.244920104026273,-13.310695651856003]|
|[44.0,160323.0,10.0,7688.0,0.0,40.0]| >50K |[160323.23272903427,-7683.121090489607,-19.729118648470976]|
|[18.0,103497.0,10.0,0.0,0.0,30.0]   | <=50K|[103496.99961293535,3.142862309150963,-4.141563083946321]  |
|[34.0,198693.0,6.0,0.0,0.0,30.0]    | <=50K|[198692.9993369046,6.03791177465338,-7.894879761309586]    |
|[29.0,227026.0,9.0,0.0,0.0,40.0]    | <=50K|[227025.99932507655,6.899470708670979,-9.011878890810314]  |
|[63.0,104626.0,15.0,3103.0,0.0,32.0]| >50K |[104626.09338764261,-3099.8250060692035,-9.648800672052692]|
|[24.0,369667.0,10.0,0.0,0.0,40.0]   | <=50K|[369666.99919110356,11.241251385609905,-14.581104454203475]|
|[55.0,104996.0,4.0,0.0,0.0,10.0]    | <=50K|[104995.9992947583,3.186050789405019,-4.236895975019816]   |
|[65.0,184454.0,9.0,6418.0,0.0,40.0] | >50K |[184454.1939240066,-6412.391589847388,-18.518448307264528] |
|[36.0,212465.0,13.0,0.0,0.0,40.0]   | <=50K|[212464.99927015396,6.455148844458399,-8.458640605561254]  |
|[26.0,82091.0,9.0,0.0,0.0,39.0]     | <=50K|[82090.999542367,2.489111409624171,-3.335593188553175]     |
|[58.0,299831.0,9.0,0.0,0.0,35.0]    | <=50K|[299830.9989556855,9.111696151562521,-11.909141441347733]  |
|[48.0,279724.0,9.0,3103.0,0.0,48.0] | >50K |[279724.0932834471,-3094.495799296398,-16.491321474159864] |
|[43.0,346189.0,14.0,0.0,0.0,50.0]   | >50K |[346188.9990067698,10.522518314317386,-13.720686643182727] |
|[20.0,444554.0,10.0,0.0,0.0,25.0]   | <=50K|[444553.9991678726,13.52288689604709,-17.47586621453762]   |
|[43.0,128354.0,9.0,0.0,0.0,30.0]    | <=50K|[128353.99933456781,3.895809826834201,-5.163630508998832]  |
|[37.0,60548.0,9.0,0.0,0.0,20.0]     | <=50K|[60547.99950268136,1.834388499828796,-2.482228457083787]   |
|[40.0,85019.0,16.0,0.0,0.0,45.0]    | >50K |[85018.99937940767,2.5751267063691055,-3.4924978737087193] |
+------------------------------------+------+-----------------------------------------------------------+
only showing top 20 rows

3、训练分类模型并预测居民收入 

          在主成分分析的基础上,采用逻辑斯蒂回归,或者决策树模型预测居民收入是否超过50K;对Test数据集进行验证。

        训练逻辑斯蒂回归模型,并进行测试,得到预测准确率。

>>> labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(result)
labelIndexer: pyspark.ml.feature.StringIndexerModel = StringIndexer_49fd892bf407764dcffb >>> for label in labelIndexer.labels:print(label)<=50K>50K>>> featureIndexer = VectorIndexer(inputCol="pcaFeatures", outputCol="indexedFeatures").fit(result)
featureIndexer: pyspark.ml.feature.VectorIndexerModel = VectorIndexer_48bc920d8af88e337d21>>> print(featureIndexer.numFeatures)
3>>> labelConverter = IndexToString(inputCol="prediction", outputCol="predictedLabel",labels=labelIndexer.labels)
labelConverter: pyspark.ml.feature.IndexToString = IndexToString_40e99a67399e57d7950c >>> lr = LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(100)
lr: pyspark.ml.classification.LogisticRegression = LogisticRegression_44efaefad414357b7c36>>> lrPipeline = Pipeline().setStages([labelIndexer, featureIndexer, lr, labelConverter])
lrPipeline: pyspark.ml.Pipeline = Pipeline_49a886038fe4366cb525 >>> lrPipelineModel = lrPipeline.fit(result)
lrPipelineModel: pyspark.ml.PipelineModel = PipelineModel_43eb8e7d01dae015460c >>> lrModel = lrPipelineModel.stages[2]
lrModel:pyspark.ml.classification.LogisticRegressionModel = LogisticRegression_44efaefad414357b7c36>>> print ("Coefficients: \n " + str(lrModel.coefficientMatrix)+"\nIntercept: "+str(lrModel.interceptVector)+ "\n numClasses: "+str(lrModel.numClasses)+"\n numFeatures: "+str(lrModel.numFeatures))
Coefficients: DenseMatrix([[-1.98285864e-07, -3.50909247e-04, -8.45150628e-04]])
Intercept: [-1.4525982557843347]numClasses: 2numFeatures: 3>>> lrPredictions = lrPipelineModel.transform(testdata)
lrPredictions: pyspark.sql.DataFrame = DataFrame[features: vector, label: string, pcaFeatures: vector, indexedLabel: double, indexedFeatures: vector, rawPrediction: vector, probability: vector, prediction: double, predictedLabel: string] >>> evaluator = MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
evaluator: pyspark.ml.evaluation.MulticlassClassificationEvaluator = MulticlassClassificationEvaluator_44fb8a00fb8868ae541f >>> lrAccuracy = evaluator.evaluate(lrPredictions)
lrAccuracy: Double = 0.7764235163053484>>> print("Test Error = %g " % (1.0 - lrAccuracy))
Test Error = 0.223576

4、超参数调优

        利用CrossValidator确定最优的参数,包括最优主成分PCA的维数、分类器自身的参数等。

>>> pca = PCA().setInputCol("features").setOutputCol("pcaFeatures")
pca: pyspark.ml.feature.PCA = PCA_465ea3aeee8f823b1cc2>>> labelIndexer = StringIndexer().setInputCol("label").setOutputCol("indexedLabel").fit(df)
labelIndexer: pyspark.ml.feature.StringIndexerModel = StringIndexer_4a4caa1f671823df2712 >>> featureIndexer = VectorIndexer().setInputCol("pcaFeatures").setOutputCol("indexedFeatures")
featureIndexer: pyspark.ml.feature.VectorIndexer = VectorIndexer_4a87a808787866220518>>> labelConverter = IndexToString().setInputCol("prediction").setOutputCol("predictedLabel").setLabels(labelIndexer.labels)
labelConverter: pyspark.ml.feature.IndexToString = IndexToString_444190300664cc71e5b5>>> lr = LogisticRegression().setLabelCol("indexedLabel").setFeaturesCol("indexedFeatures").setMaxIter(100)
lr: pyspark.ml.classification.LogisticRegression = LogisticRegression_4ff3b577b810fd21ab1b>>> lrPipeline = Pipeline().setStages([pca, labelIndexer, featureIndexer, lr, labelConverter])
lrPipeline: pyspark.ml.Pipeline = Pipeline_4165a34a906306ee044a>>> paramGrid = ParamGridBuilder().addGrid(pca.k, [1,2,3,4,5,6]).addGrid(lr.elasticNetParam, [0.2,0.8]).addGrid(lr.regParam, [0.01, 0.1, 0.5]).build()
paramGrid: Array[pyspark.ml.param.ParamMap] =
{Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.'): 0.2, Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='regParam', doc='regularization parameter (>= 0).'): 0.01, Param(parent=u'PCA_465ea3aeee8f823b1cc2', name='k', doc='the number of principal components'): 1}
{Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.'): 0.2, Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='regParam', doc='regularization parameter (>= 0).'): 0.01, Param(parent=u'PCA_465ea3aeee8f823b1cc2', name='k', doc='the number of principal components'): 2}
{Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='elasticNetParam', doc='the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.'): 0.2, Param(parent=u'LogisticRegression_4ff3b577b810fd21ab1b', name='regParam', doc='regularization parameter (>= 0).'): 0.01, Param(parent=u'PCA_465ea3ae……
>>> cv = CrossValidator().setEstimator(lrPipeline).setEvaluator(MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")).setEstimatorParamMaps(paramGrid).setNumFolds(3)
cv: pyspark.ml.tuning.CrossValidator = CrossValidator_4d4eaeb04035ccae91e2>>> cvModel = cv.fit(df)
cvModel: pyspark.ml.tuning.CrossValidatorModel = CrossValidatorModel_4601a7d61debbfd3544e>>> lrPredictions=cvModel.transform(test)
lrPredictions: pyspark.sql.DataFrame = [features: vector, label: string, pcaFeatures: vector, indexedLabel: double, indexedFeatures: vector, rawPrediction: vector, probability: vector, prediction: double, predictedLabel: string] >>> evaluator = MulticlassClassificationEvaluator().setLabelCol("indexedLabel").setPredictionCol("prediction")
evaluator: pyspark.ml.evaluation.MulticlassClassificationEvaluator = MulticlassClassificationEvaluator_40bfa39a6a73931437c8>>> lrAccuracy = evaluator.evaluate(lrPredictions)
lrAccuracy: Double = 0.7833268290041506>>> print("准确率为"+str(lrAccuracy))
准确率为0.7833268290041506>>> bestModel= cvModel.bestModel
bestModel: pyspark.ml.PipelineModel = PipelineModel_47388ab70ca452562894>>> lrModel = bestModel.stages[3]
lrModel: pyspark.ml.classification.LogisticRegressionModel = LogisticRegression_46d894d2cea1ed552ec5>>> print ("Coefficients: \n " + str(lrModel.coefficientMatrix)+"\nIntercept: "+str(lrModel.interceptVector)+ "\n numClasses: "+str(lrModel.numClasses)+"\n numFeatures: "+str(lrModel.numFeatures))
Coefficients: DenseMatrix([[-1.50035172e-07, -1.68933655e-04, -8.83869475e-04,4.92262006e-02,  3.10992712e-02, -2.81742804e-01]])
Intercept: [-7.459195847829245]numClasses: 2numFeatures: 6>>> pcaModel = bestModel.stages[0]
pcaModel: pyspark.ml.feature.PCAModel = PCA_423c88604bc4e9c371f3>>> print("Primary Component: " + str(pcaModel.pc))
Primary Component: -9.905077142269292E-6   -1.435140700776355E-4   ... (6 total)
0.9999999987209459      3.0433787125958012E-5   ...
-1.0528384042028638E-6  -4.2722845240104086E-5  ...
3.036788110999389E-5    -0.9999984834627625     ...
-3.9138987702868906E-5  0.0017298954619051868   ...
-2.1955537150508903E-6  -1.3109584368381985E-4  ...

可以看出,PCA最优的维数是6。

四、结果分析与实验体会

        MLlib是Spark的机器学习(Machine Learning)库,旨在简化机器学习的工程实践工作 MLlib由一些通用的学习算法和工具组成,包括分类、回归、聚类、协同过滤、降维等,同时还包括底层的优化原语和高层的流水线(Pipeline)API。通过对 Spark 机器学习库 MLlib 的编程实验,我体会到了以下几个方面的丰富之处:

  1. 广泛的算法覆盖: MLlib 提供了各种机器学习算法的实现,包括线性回归、逻辑回归、决策树、随机森林、梯度提升树、支持向量机、朴素贝叶斯、聚类算法(如K-means和层次聚类)、推荐系统(如协同过滤和基于矩阵分解的方法)等。这使得我们可以选择最适合特定任务的算法进行建模和预测。

  2. 大规模数据处理: 基于 Spark 引擎,MLlib 可以处理大规模数据集,利用分布式计算能力进行高效的机器学习任务。分布式数据处理和计算可以加速训练过程,使其适用于处理海量数据的场景。

  3. DataFrame API: MLlib 使用 Spark 的 DataFrame API 进行数据处理和特征工程,这个 API 提供了丰富的函数和转换操作,使得数据清洗、特征提取和转换等流程更加简洁和可扩展。

  4. 模型持久化与加载: MLlib 支持将训练好的模型保存到磁盘,并且可以方便地加载模型进行预测和推理。这样,在实际应用中,可以将模型部署到生产环境中,进行实时的数据处理和预测。

  5. 参数调优工具: MLlib 提供了交叉验证和参数网格搜索等调参工具,帮助我们优化模型的超参数选择,提高模型的性能和泛化能力。

        通过深入学习和实践 MLlib,我们可以更好地理解和应用各种机器学习算法,掌握大规模数据处理和分布式计算的技巧,为解决实际问题提供强大的工具和框架。MLlib 的丰富性使得我们能够灵活选择和组合不同的算法和技术,以满足不同场景下的需求,并构建出高效、准确的机器学习模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/681431.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端JavaScript篇之对async/await 的理解、async/await的优势、async/await对比Promise的优势

目录 对async/await 的理解async/await的优势async/await对比Promise的优势 对async/await 的理解 async/await 是 ES2017 中引入的新特性&#xff0c;它是一种基于 Promise 的异步编程模式&#xff0c;可以让我们更方便地处理异步操作&#xff0c;避免回调地狱&#xff0c;使…

利用Cloudfare worker反代github

绑定你的域名到 cloudflare 创建一个 worker&#xff0c;并写入如下代码&#xff1a; // 反代目标网站. const upstream github.com;// 反代目标网站的移动版. const upstream_mobile github.com;// 访问区域黑名单&#xff08;按需设置&#xff09;. const blocked_region …

react 【二】 setState/react性能优化/dom操作

文章目录 1、setState1.1 setState的三种用法1.2 setState为什么是异步 2、React性能优化2.1 react的更新机制2.2 如何优化性能2.2.1 shouldComponentUpdate2.2.2 PureComponent2.2.3 memo 3、不可变数据的力量4、dom操作4.1 通过ref获取dom的三种方式4.2 执行子组件的方法&…

大模型提示学习、Prompting微调知识

为什么需要提示学习&#xff1f; 提示学习是一种在自然语言处理任务中引入人类编写的提示或示例来辅助模型生成更准确和有意义的输出的技术。以下是一些使用提示学习的原因&#xff1a; 解决模糊性&#xff1a;在某些任务中&#xff0c;输入可能存在歧义或模糊性&#xff0c;通…

【ES】--Elasticsearch的分词器详解

目录 一、前言二、分词器原理1、常用分词器2、ik分词器模式3、指定索引的某个字段进行分词测试3.1、采用ts_match_analyzer进行分词3.2、采用standard_analyzer进行分词三、如何调整分词器1、已存在的索引调整分词器2、特别的词语不能被拆开一、前言 最近项目需求,针对客户提…

Java多线程 继承Thread类

目录 程序 进程 线程多线程实例创建线程测试线程 程序 进程 线程 程序&#xff0c;进程和线程是操作系统中的基本概念&#xff0c;它们在多线程编程中起着重要的作用。 程序&#xff1a;程序是一组指令的集合&#xff0c;用于实现特定的功能。程序通常是静态的&#xff0c;在程…

【开源】基于JAVA+Vue+SpringBoot的班级考勤管理系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 系统基础支持模块2.2 班级学生教师支持模块2.3 考勤签到管理2.4 学生请假管理 三、系统设计3.1 功能设计3.1.1 系统基础支持模块3.1.2 班级学生教师档案模块3.1.3 考勤签到管理模块3.1.4 学生请假管理模块 3.2 数据库设…

Java学习笔记------ArrayList(二)

基本数据类型对应的包装类 byte------Byte、short------Short char------Character、int------Intege long------Long、float------Float double------Double、boolean------Boolean 例如&#xff1a; import java.util.ArrayList; public class test01{public static vo…

Arduino 开发环境

Arduino 刚开始挺简单的&#xff0c;买一块 UNO 或者 Nano&#xff0c;官网下载 IDE &#xff08;在线的就算了&#xff0c;太慢&#xff09;&#xff0c;立即就可以开始编程了&#xff0c;至少让板载 LED 亮起来没问题。这也是 Arduino 亲儿子的优势&#xff0c;省心。 不过你…

云服务器操作系统Windows和Linux镜像有什么区别?

阿里云服务器镜像Windows和Linux操作系统有什么区别&#xff1f;性能有差异吗&#xff1f;有&#xff0c;同配置下Linux性能要优于Windows&#xff0c;但这与阿里云无关&#xff0c;仅仅是linux和windows之间的区别。另外&#xff0c;阿里云提供的windows和linux操作系统均为正…

Java中 HashSet如何判断两个对象是否相等

HashSet如何判断两个对象是否相等 HashSet 是 Java 中的一个类&#xff0c;它实现了 Set 接口。HashSet 中的元素是无序且唯一的&#xff0c;它不保证元素的顺序&#xff0c;也不允许出现重复元素。为了确定两个对象是否相等&#xff0c;HashSet 使用了以下两个方法&#xff1…

LeetCode、338. 比特位计数【简单,位运算】

文章目录 前言LeetCode、338. 比特位计数【中等&#xff0c;位运算】题目链接与分类思路位运算移位处理前缀思想实现 资料获取 前言 博主介绍&#xff1a;✌目前全网粉丝2W&#xff0c;csdn博客专家、Java领域优质创作者&#xff0c;博客之星、阿里云平台优质作者、专注于Java…

Vue3快速上手(三)Composition组合式API及setup用法

一、Vue2的API风格 Vue2的API风格是Options API,也叫配置式API。一个功能的数据&#xff0c;交互&#xff0c;计算&#xff0c;监听等都是分别配置在data, methods&#xff0c;computed, watch等模块里的。如下&#xff1a; <template><div class"person"…

Leetcode 606.根据二叉树创建字符串

给你二叉树的根节点root&#xff0c;请你采用前序遍历的方式&#xff0c;将二叉树转化为一个由括号和整数组成的字符串&#xff0c;返回构造出的字符串。 空节点使用一对空括号对"root"表示&#xff0c;转化后需要省略所有不影响字符串与原始二叉树之间的一对一映射…

[ai笔记1] 借着“ai春晚”开个场

1 文思ai笔记-新的开始 今天是2024年2月29日&#xff0c;也是传统农历的除夕夜。早起在ai圈看到一个比较新奇的消息&#xff0c;ai春晚今日举办&#xff0c;竟然有一点小小的激动。这些年确实好久没看过春晚了&#xff0c;自己对于春晚的映像还停留在“白云黑土”、“今天&…

论文解读:MobileOne: An Improved One millisecond Mobile Backbone

论文创新点汇总&#xff1a;人工智能论文通用创新点(持续更新中...)-CSDN博客 论文总结 关于如何提升模型速度&#xff0c;当今学术界的研究往往聚焦于如何将FLOPs或者参数量的降低&#xff0c;而作者认为应该是减少分支数和选择高效的网络结构。 概述 MobileOne(≈MobileN…

react【五】redux/reduxToolkit/手写connext

文章目录 1、回顾纯函数2、redux2.1 redux的基本使用2.2 通过action修改store的数值2.3 订阅state的变化2.4 目录结构2.5 Redux的使用过程2.6 redux的三大原则2.7 Redux官方图 3、redux在React中的使用4、react-redux使用4.1 react-redux的基本使用4.2 异步请求 redux-thunk4.3…

课时26:内容格式化_常用符号解读_终端输出

3.1.2 终端输出 学习目标 这一节&#xff0c;我们从 后台执行、信息符号、小结 三个方面来学习。 后台执行 简介 & 就是将一个命令从前台转到后台执行,使用格式如下&#xff1a;命令 &简单演示 前台执行休眠命令 [rootlocalhost ~]# sleep 4 界面卡住4秒后消失后…

字符串大小比较的方法以及函数的多返回值

1.字符串的大小比较: 按照ASCII码表的值进行比较字符串大小 print(f"abc大于abd,结果为{abc>abd}") #结果为布尔类型False print(f"a大于A,结果为{a>A}") #True print(f"key1大于key2,结果为{key1>key2}") #False 2.函数的多返回值: …

分布式文件系统 SpringBoot+FastDFS+Vue.js

分布式文件系统 SpringBootFastDFSVue.js 一、分布式文件系统1.1.文件系统1.2.什么是分布式文件系统1.3.分布式文件系统的出现1.3.主流的分布式文件系统1.4.分布式文件服务提供商1.4.1.阿里OSS1.4.2.七牛云存储1.4.3.百度云存储 二、fastDFS2.1.fastDSF介绍2.2.为什么要使用fas…