深度学习基础之《深度学习介绍》

一、深度学习与机器学习的区别

1、特征提取方面
机器学习:人工特征提取 + 分类算法
深度学习:没有人工特征提取,直接将特征值传进去

(1)机器学习的特征工程步骤是要靠手工完成的,而且需要大量领域专业知识
(2)深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,将数据从一层传递到另一层来构建更复杂的模型。通过训练大量数据自动得出模型,不需要人工特征提取环节
(3)深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。适合用在难提取特征的图像、语音、自然语言处理领域

2、数据量和计算性能要求
机器学习需要的执行时间远少于深度学习,深度学习参数往往很庞大,需要通过大量数据的多次优化来训练参数

(1)深度学习需要大量的训练数据集
(2)训练深度神经网络需要大量的算力
(3)可能需要数天、甚至数周的时间,才能使用数百万张图像的数据集训练出一个深度网络
    所以深度学习通常:
    需要强大的GPU服务器来进行计算
    全面管理的分布式训练与预测服务

3、算法代表
(1)机器学习
    朴素贝叶斯、决策树等
(2)深度学习
    神经网络

二、深度学习的应用场景

1、图像识别
(1)物体识别
(2)场景识别
(3)车型识别
(4)人脸检测跟踪
(5)人脸关键点定位
(6)人脸身份认证

2、自然语言处理技术
(1)机器翻译
(2)文本识别
(3)聊天对话

3、语音技术
(1)语音识别

三、深度学习框架介绍

1、常见深度学习框架对比

这是一张2015-2016年的图表,2015年11月谷歌将TensorFlow开源,那时候国内开始卷java好像[笑哭][笑哭][笑哭]

说明:
(1)最常用的框架当属TensorFlow和Pytorch,而Caffe和Caffe2次之
(2)PyTorch和Torch更适用于学术研究(research);TensorFlow、Caffe、Caffe2更适用于工业界的生产环境部署(industrial production)
(3)Caffe适用于处理静态图像(static graph);Torch和PyTorch更适用于动态图像(dynamic graph);TensorFlow在两种情况下都很实用
(4)TensorFlow和Caffe2可在移动端使用

2、TensorFlow的特点
官网:https://tensorflow.google.cn/?hl=zh-cn

(1)高度灵活
它不仅可以用来做神经网络算法研究,也可以用来做普通的机器学习算法,甚至是只要把计算表示成数据流图,都可以用TensorFlow
(2)语言多样性
TensorFlow使用C++实现,然后用Python封装
(3)设备支持
TensorFlow可以运行在各种硬件上,同时根据计算的需要,合理将运算分配到相应的设备,比如卷积就分配到GPU上,也允许在CPU和GPU上的计算分布
(4)Tensorboard可视化
因为深度学习训练出来的模型,参数非常非常多,网络层数也非常非常的多,可视化可以帮助你展示

3、TensorFlow的安装

(1)CPU版本

pip install -U tensorflowCollecting tensorflowDownloading tensorflow-2.6.2-cp36-cp36m-manylinux2010_x86_64.whl (458.3 MB)|████████████████████████████████| 458.3 MB 16 kB/s              
Collecting astunparse~=1.6.3Downloading astunparse-1.6.3-py2.py3-none-any.whl (12 kB)
Collecting h5py~=3.1.0Downloading h5py-3.1.0-cp36-cp36m-manylinux1_x86_64.whl (4.0 MB)|████████████████████████████████| 4.0 MB 35.6 MB/s            
Collecting tensorboard<2.7,>=2.6.0Downloading tensorboard-2.6.0-py3-none-any.whl (5.6 MB)|████████████████████████████████| 5.6 MB 51.5 MB/s            
Collecting grpcio<2.0,>=1.37.0Downloading grpcio-1.48.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.6 MB)|████████████████████████████████| 4.6 MB 47.3 MB/s            
Collecting flatbuffers~=1.12.0Downloading flatbuffers-1.12-py2.py3-none-any.whl (15 kB)
Collecting opt-einsum~=3.3.0Downloading opt_einsum-3.3.0-py3-none-any.whl (65 kB)|████████████████████████████████| 65 kB 9.6 MB/s             
Collecting clang~=5.0Downloading clang-5.0.tar.gz (30 kB)Preparing metadata (setup.py) ... done
Collecting six~=1.15.0Downloading six-1.15.0-py2.py3-none-any.whl (10 kB)
Collecting typing-extensions~=3.7.4Downloading typing_extensions-3.7.4.3-py3-none-any.whl (22 kB)
Collecting protobuf>=3.9.2Downloading protobuf-3.19.6-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB)|████████████████████████████████| 1.1 MB 47.2 MB/s            
Collecting gast==0.4.0Downloading gast-0.4.0-py3-none-any.whl (9.8 kB)
Requirement already satisfied: numpy~=1.19.2 in /usr/local/lib64/python3.6/site-packages (from tensorflow) (1.19.5)
Requirement already satisfied: wheel~=0.35 in /usr/local/lib/python3.6/site-packages (from tensorflow) (0.37.1)
Collecting google-pasta~=0.2Downloading google_pasta-0.2.0-py3-none-any.whl (57 kB)|████████████████████████████████| 57 kB 11.0 MB/s            
Collecting wrapt~=1.12.1Downloading wrapt-1.12.1.tar.gz (27 kB)Preparing metadata (setup.py) ... done
Collecting termcolor~=1.1.0Downloading termcolor-1.1.0.tar.gz (3.9 kB)Preparing metadata (setup.py) ... done
Collecting tensorflow-estimator<2.7,>=2.6.0Downloading tensorflow_estimator-2.6.0-py2.py3-none-any.whl (462 kB)|████████████████████████████████| 462 kB 54.2 MB/s            
Collecting absl-py~=0.10Downloading absl_py-0.15.0-py3-none-any.whl (132 kB)|████████████████████████████████| 132 kB 61.0 MB/s            
Collecting keras<2.7,>=2.6.0Downloading keras-2.6.0-py2.py3-none-any.whl (1.3 MB)|████████████████████████████████| 1.3 MB 55.6 MB/s            
Collecting keras-preprocessing~=1.1.2Downloading Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)|████████████████████████████████| 42 kB 3.0 MB/s             
Collecting cached-propertyDownloading cached_property-1.5.2-py2.py3-none-any.whl (7.6 kB)
Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/site-packages (from tensorboard<2.7,>=2.6.0->tensorflow) (59.6.0)
Collecting werkzeug>=0.11.15Downloading Werkzeug-2.0.3-py3-none-any.whl (289 kB)|████████████████████████████████| 289 kB 45.9 MB/s            
Collecting markdown>=2.6.8Downloading Markdown-3.3.7-py3-none-any.whl (97 kB)|████████████████████████████████| 97 kB 15.3 MB/s            
Collecting google-auth-oauthlib<0.5,>=0.4.1Downloading google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB)
Collecting google-auth<2,>=1.6.3Downloading google_auth-1.35.0-py2.py3-none-any.whl (152 kB)|████████████████████████████████| 152 kB 54.5 MB/s            
Collecting requests<3,>=2.21.0Downloading requests-2.27.1-py2.py3-none-any.whl (63 kB)|████████████████████████████████| 63 kB 4.3 MB/s             
Collecting tensorboard-data-server<0.7.0,>=0.6.0Downloading tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB)|████████████████████████████████| 4.9 MB 49.6 MB/s            
Collecting tensorboard-plugin-wit>=1.6.0Downloading tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB)|████████████████████████████████| 781 kB 35.3 MB/s            
Collecting rsa<5,>=3.1.4Downloading rsa-4.9-py3-none-any.whl (34 kB)
Collecting cachetools<5.0,>=2.0.0Downloading cachetools-4.2.4-py3-none-any.whl (10 kB)
Collecting pyasn1-modules>=0.2.1Downloading pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB)|████████████████████████████████| 181 kB 56.0 MB/s            
Collecting requests-oauthlib>=0.7.0Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)
Requirement already satisfied: importlib-metadata>=4.4 in /usr/local/lib/python3.6/site-packages (from markdown>=2.6.8->tensorboard<2.7,>=2.6.0->tensorflow) (4.8.3)
Collecting urllib3<1.27,>=1.21.1Downloading urllib3-1.26.18-py2.py3-none-any.whl (143 kB)|████████████████████████████████| 143 kB 53.4 MB/s            
Collecting certifi>=2017.4.17Downloading certifi-2024.2.2-py3-none-any.whl (163 kB)|████████████████████████████████| 163 kB 56.2 MB/s            
Collecting idna<4,>=2.5Downloading idna-3.6-py3-none-any.whl (61 kB)|████████████████████████████████| 61 kB 343 kB/s             
Collecting charset-normalizer~=2.0.0Downloading charset_normalizer-2.0.12-py3-none-any.whl (39 kB)
Requirement already satisfied: dataclasses in /usr/local/lib/python3.6/site-packages (from werkzeug>=0.11.15->tensorboard<2.7,>=2.6.0->tensorflow) (0.8)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.6/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.7,>=2.6.0->tensorflow) (3.6.0)
Collecting pyasn1<0.6.0,>=0.4.6Downloading pyasn1-0.5.1-py2.py3-none-any.whl (84 kB)|████████████████████████████████| 84 kB 8.1 MB/s             
Collecting oauthlib>=3.0.0Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB)|████████████████████████████████| 151 kB 41.8 MB/s            
Building wheels for collected packages: clang, termcolor, wraptBuilding wheel for clang (setup.py) ... doneCreated wheel for clang: filename=clang-5.0-py3-none-any.whl size=30694 sha256=4b478abb7303e2ab6ceae5dd321630fe487cdbb7229b1c9109dbbda97b6f6de0Stored in directory: /root/.cache/pip/wheels/22/4c/94/0583f60c9c5b6024ed64f290cb2d43b06bb4f75577dc3c93a7Building wheel for termcolor (setup.py) ... doneCreated wheel for termcolor: filename=termcolor-1.1.0-py3-none-any.whl size=4848 sha256=85b28ee5cc23acde89b4124855db5fec4d3b5bc9f09d22853e2a5d32f869232fStored in directory: /root/.cache/pip/wheels/93/2a/eb/e58dbcbc963549ee4f065ff80a59f274cc7210b6eab962acdcBuilding wheel for wrapt (setup.py) ... doneCreated wheel for wrapt: filename=wrapt-1.12.1-cp36-cp36m-linux_x86_64.whl size=64570 sha256=5313bb733d9d37abf00e4ce2533656facec5e4518e11aaafb7dbb3171cd1bcaaStored in directory: /root/.cache/pip/wheels/32/42/7f/23cae9ff6ef66798d00dc5d659088e57dbba01566f6c60db63
Successfully built clang termcolor wrapt
Installing collected packages: urllib3, pyasn1, idna, charset-normalizer, certifi, typing-extensions, six, rsa, requests, pyasn1-modules, oauthlib, cachetools, requests-oauthlib, google-auth, werkzeug, tensorboard-plugin-wit, tensorboard-data-server, protobuf, markdown, grpcio, google-auth-oauthlib, cached-property, absl-py, wrapt, termcolor, tensorflow-estimator, tensorboard, opt-einsum, keras-preprocessing, keras, h5py, google-pasta, gast, flatbuffers, clang, astunparse, tensorflowAttempting uninstall: typing-extensionsFound existing installation: typing-extensions 4.1.1Uninstalling typing-extensions-4.1.1:Successfully uninstalled typing-extensions-4.1.1Attempting uninstall: sixFound existing installation: six 1.16.0Uninstalling six-1.16.0:Successfully uninstalled six-1.16.0
Successfully installed absl-py-0.15.0 astunparse-1.6.3 cached-property-1.5.2 cachetools-4.2.4 certifi-2024.2.2 charset-normalizer-2.0.12 clang-5.0 flatbuffers-1.12 gast-0.4.0 google-auth-1.35.0 google-auth-oauthlib-0.4.6 google-pasta-0.2.0 grpcio-1.48.2 h5py-3.1.0 idna-3.6 keras-2.6.0 keras-preprocessing-1.1.2 markdown-3.3.7 oauthlib-3.2.2 opt-einsum-3.3.0 protobuf-3.19.6 pyasn1-0.5.1 pyasn1-modules-0.3.0 requests-2.27.1 requests-oauthlib-1.3.1 rsa-4.9 six-1.15.0 tensorboard-2.6.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 tensorflow-2.6.2 tensorflow-estimator-2.6.0 termcolor-1.1.0 typing-extensions-3.7.4.3 urllib3-1.26.18 werkzeug-2.0.3 wrapt-1.12.1

(2)GPU版本
注:GPU版本适用于带有CUDA核心的NV显卡,英特尔的核显,AMD的显卡不行

(3)CPU版本和GPU版本对比
CPU:核心的数量更少,但是每一个核心的速度更快,性能更强,更适用于处理连续性(sequential)任务
GPU:核心的数量更多,但是每一个核心的处理速度较慢,更适合于并行(parallel)任务
 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/680874.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Golang中的fmt包:格式化输入输出的利器

Golang中的fmt包&#xff1a;格式化输入输出的利器 在软件开发的世界里&#xff0c;fmt包就像是一位忠实的伙伴&#xff0c;始终陪伴着开发人员。它简化了格式化输入输出的过程&#xff0c;让打印和扫描数据变得轻松自如。无论是向控制台输出简单的消息&#xff0c;还是处理复杂…

Rust入门:如何在windows + vscode中关闭程序codelldb.exe

在windows中用vscode单步调试rust程序的时候&#xff0c;发现无论是按下stop键&#xff0c;还是运行完程序&#xff0c;调试器codelldb.exe一直霸占着主程序不退出&#xff0c;如果此时对代码进行修改&#xff0c;后续就没法再编译调试了。 目前我也不知道要怎么处理这个事&am…

数据结构——6.3 图的遍历

6.3 图的遍历 一、概念 图的广度优先遍历 树的广度优先遍历&#xff08;层序遍历&#xff09;&#xff1a;不存在“回路”&#xff0c;搜索相邻的结点时&#xff0c;不可能搜到已经访问过的结点&#xff1a; 若树非空&#xff0c;则根节点入队 若队列非空&#xff0c;队头元素…

C语言——oj刷题——调整数组使奇数全部都位于偶数前面

题目&#xff1a; 输入一个整数数组&#xff0c;实现一个函数&#xff0c;来调整该数组中数字的顺序使得数组中所有的奇数位于数组的前半部分&#xff0c;所有偶数位于数组的后半部分。 一、实现方法&#xff1a; 当我们需要对一个整数数组进行调整&#xff0c;使得奇数位于数…

python系统学习Day1

section1 python introduction 文中tips只做拓展&#xff0c;可跳过。 PartOne introduction 首先要对于python这门语言有一个宏观的认识&#xff0c;包括特点和应用场景。 特点分析&#xff1a; 优势 提供了完善的基础代码库&#xff0c;许多功能不必从零编写简单优雅 劣势 运…

C语言第二十三弹---指针(七)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】 指针 1、sizeof和strlen的对比 1.1、sizeof 1.2、strlen 1.3、sizeof 和 strlen的对比 2、数组和指针笔试题解析 2.1、⼀维数组 2.2、二维数组 总结 1、si…

mysql经典4张表问题

1.数据库表结构关联图 2.问题&#xff1a; 1、查询"01"课程比"02"课程成绩高的学生的信息及课程分数3.查询平均成绩大于等于60分的同学的学生编号和学生姓名和平均成绩4、查询名字中含有"风"字的学生信息5、查询课程名称为"数学"&…

单片机学习笔记---AT24C02数据存储

目录 AT24C02数据存储 准备工作 代码讲解 I2C.c 模拟起始位置的时序 模拟发送一个字节的时序 模拟接收应答的时序 模拟接收一个字节的时序 模拟发送应答的时序 模拟结束位置的时序 I2C.h AT24C02.c 字节写&#xff1a;在WORD ADDRESS&#xff08;字地址&#xff…

「Linux」软件安装

MySQL5.7在CentOS安装 安装 配置yum仓库 更新密钥&#xff1a;rpm --import https://repo.mysql.com/RPM-GPG-KEY-mysql-2022安装MySQL yum库&#xff1a;rpm -Uvh http://repo.mysql.com//mysql57-community-release-el7-7.noarch.rpm使用yum安装MySQL&#xff1a;yum -y in…

WebSocket原理详解

目录 1.引言 1.1.使用HTTP不断轮询 1.2.长轮询 2.websocket 2.1.概述 2.2.websocket建立过程 2.3.抓包分析 2.4.websocket的消息格式 3.使用场景 4.总结 1.引言 平时我们打开网页&#xff0c;比如购物网站某宝。都是点一下列表商品&#xff0c;跳转一下网页就到了商品…

电动汽车上哪些部位用到了电机?

一、背景 电动汽车中除了主驱动电机之外的其他电机的控制复杂度因电机的种类和功能而异。 一般来说&#xff0c;助力转向电机、空调风扇电机、冷却水泵电机等辅助电机的控制相对较为简单。这些电机通常只需要进行简单的开/关控制或速度调节&#xff0c;以满足车辆的基本需求。…

【实战】一、Jest 前端自动化测试框架基础入门(中) —— 前端要学的测试课 从Jest入门到TDD BDD双实战(二)

文章目录 一、Jest 前端自动化测试框架基础入门5.Jest 中的匹配器toBe 匹配器toEqual匹配器toBeNull匹配器toBeUndefined匹配器和toBeDefined匹配器toBeTruthy匹配器toBeFalsy匹配器数字相关的匹配器字符串相关的匹配器数组相关的匹配器异常情况的匹配器 6.Jest 命令行工具的使…

【Langchain Agent研究】SalesGPT项目介绍(三)

【Langchain Agent研究】SalesGPT项目介绍&#xff08;二&#xff09;-CSDN博客 上节课&#xff0c;我们介绍了salesGPT项目的初步的整体结构&#xff0c;poetry脚手架工具和里面的run.py。在run.py这个运行文件里&#xff0c;引用的最主要的类就是SalesGPT类&#xff0c;今天我…

ARP请求的构造过程

ARP请求的构造过程&#xff1a; ARP请求的构造&#xff1a; 当设备A&#xff08;发起者&#xff09;想要与设备B&#xff08;目标&#xff09;通信&#xff0c;但它只知道设备B的IP地址&#xff08;例如&#xff0c;192.168.1.2&#xff09;&#xff0c;而不知道其MAC地址。设备…

算法沉淀——链表(leetcode真题剖析)

算法沉淀——链表 01.两数相加02.两两交换链表中的节点03.重排链表04.合并 K 个升序链表05.K个一组翻转链表 链表常用技巧 1、画图->直观形象、便于理解 2、引入虚拟"头节点" 3、要学会定义辅助节点&#xff08;比如双向链表的节点插入&#xff09; 4、快慢双指针…

从源码学习访问控制符使用

从源码学习访问控制符使用 Java中的访问控制符 ​ 在Java中&#xff0c;有四个访问控制符&#xff1a;public、protected、default&#xff08;默认或缺省&#xff0c;不使用关键字&#xff09;和private。 ​ 它们的访问范围如下&#xff1a; public&#xff1a;公共访问权…

【从零到Offer】MySQL最左匹配

前言 ​ 相信大家在日常开发时&#xff0c;也经常能听到“最左匹配”这个词&#xff0c;那么什么是最左匹配呢&#xff1f;本篇文章就带你一起探索“最左匹配”的神奇秘密。 什么是最左匹配 ​ 最左匹配&#xff0c;通常指的是最左前缀匹配原则&#xff0c;即MySQL在检索数据…

联想thinkpad-E450双系统升级记

早期笔记本联想thinkpad-E450双系统 大约16年花4000多大洋&#xff0c;买了一台thinkpad-E450屏幕是16寸本&#xff0c;有AMD独立显卡&#xff0c;i5cpu&#xff0c;4G内存。 . 后来加了一个同型号4G内存组成双通道&#xff0c; . 加了一个三星固态500G&#xff0c; . 换了一个…

【C++】类的隐式类型转换

文章目录 前言一、隐式类型转换二、explicit关键字总结 前言 一、隐式类型转换 C 类的隐式类型转换是指当一个类定义了适当的构造函数或转换函数时&#xff0c;可以在需要时自动进行类型转换&#xff0c;而无需显式调用转换函数或构造函数。这使得代码更具灵活性和简洁性。下面…

备战蓝桥杯---动态规划(入门2)

今天主要介绍区间dp比较难的题&#xff1a; 下面是分析&#xff1a; 我们如果先固定点V0&#xff0c;那我们得去枚举两个点使它构成三角形&#xff0c;同时求目标值也比较难确定&#xff08;起始与终止都带0&#xff09;&#xff0c;于是我们考虑固定边&#xff0c;我们固定v0…