目录
- 1. 为什么要有动态内存分配
- 2. malloc和free
- malloc
- free
- 3. calloc和realloc
- calloc
- realloc
- 4. 常见的动态内存的错误
- 对NULL直接的解引用操作
- 对动态开辟空间的越界访问
- 对非动态开辟内存使用free释放
- 使用free释放一块动态开辟内存的一部分
- 对同一块动态内存多次释放
- 动态开辟内存忘记释放(内存泄露)
- 5. 动态内存经典笔试题分析
- 题目1
- 题目2
- 题目3
- 题目4
- 6. 柔性数组
- 柔性数组的特点:
- 柔性数组的使用
- 7. 总结C/C++中内存区域划分
1. 为什么要有动态内存分配
我们已经掌握的内存开辟方式有:
int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间
但是上述的开辟空间的方式有两个特点:
- 空间开辟大小是固定的
- 数组在声明的时候,必须指定数组的长度,数组空间一旦确定了大小就不能调整
但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了
C语言引入了动态内存开辟,让程序员自己可以申请和释放空间,就比较灵活了
2. malloc和free
malloc
C语言提供了一个动态内存开辟的函数
void* malloc (size_t szie);
这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针
- 如果开辟成功,则返回一个指向开辟好空间的指针
- 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查
- 返回值的类型是void*,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定
- 如果参数size为0,malloc的行为是标准是未定义的,取决于编译器
#define _CRT_SECURE_NO_WARNINGS 1
#include <stdio.h>
#include<stdlib.h>int main()
{int* p = (int*)malloc(40);if (p == NULL){perror("malloc");return 1;}int i = 0;for (i = 0; i < 10; i++){*(p + i) = i;}for (i = 0; i < 10; i++){printf("%d ", *(p + i));}//释放空间free(p);p = NULL;return 0;
}
malloc只知道申请多大的空间,但是不知道会放什么类型的数据,所以malloc函数就只能返回void*
free
C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:
void free (void* ptr);
free函数用来释放动态开辟的内存
- 如果参数ptr指向的空间不是动态开辟的,那free函数的行为是未定义的
- 如果参数ptr是NULL指针,则函数什么事都不做
malloc和free都声明在stdlib.h头文件中
3. calloc和realloc
calloc
C语言还提供了一个函数叫calloc,calloc函数也用来动态内存分配。原型如下:
void * calloc (size_t num , szie_t size);
- 函数的功能是为num个大小为size的元素开辟一块空间,并且把空间的每个字节初始化为0.
- 与函数malloc的区别只在于calloc会在返回地址之前把申请的空间的每个字节初始化全0
int main()
{int* p = (int*)calloc(10, sizeof(int));if (p == NULL){perror("malloc");return 1;}int i = 0;for (i = 0; i < 10; i++){printf("%d ", *(p + i));}//释放空间free(p);p = NULL;return 0;
}
所以如果我们对申请的内存空间的内容要求初始化,那么可以很方便的使用calloc函数来完成任务
realloc
- realloc函数的出现让动态内存管理更加灵活
- 时候回我们发现过去申请的空间太小了,有时候我们又觉得申请的空间过大了,那未来合理的时候的内存,我们一定会对内存的大小做灵活的调整。那realloc函数就可以做到对动态内存大小的调整。
函数原型如下:
void* realloc (void* ptr, size_t size);
- ptr是要调整的内存地址
- size调整之后新大小
- 返回值为调整之后的内存起始位置
- 这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间
- realloc在调整内存空间的是存在两种情况:
情况1:原有内存之后有足够大的空间
情况2:原有空间之后没有足够大的空间
int main()
{int* p = (int*)calloc(10, sizeof(int));if (p == NULL){perror("malloc");return 1;}int i = 0;for (i = 0; i < 10; i++){printf("%d ", *(p + i));}//空间不理想,想要扩大空间,20个整型int* ptr = (int*)realloc(p, 20 * sizeof(int));if (ptr != NULL){p = ptr;}else {perror("realloc");return 1;}//释放空间free(p);p = NULL;return 0;
}
realloc
1.realloc调整空间失败,会返回NULL
2.调整成功,有两种情况
情况1:
在已经开辟好的空间后面,没有足够的空间,直接进行空间的扩大,在这种情况下,realloc函数会在内存的堆区重新找一个空间(满足新的空间的大小需求的),同时会把旧的数据拷贝到新空间,然后释放空间,同时返回新的空间的起始地址
情况2:
在已经开辟好的空间后边,有足够的空间,直接进行扩大,扩大空间后,直接返回旧的空间的起始地址!
realloc该函数除了能够调整空间之外,他还能实现和malloc一样的功能!
int main()
{int* p = (int*)realloc(NULL, 40);//等价于macllocif (p == NULL){perror("malloc");return 1;}
4. 常见的动态内存的错误
对NULL直接的解引用操作
int main()
{int* p = (int*)malloc(100);*p = 20;//p有可能是NULL指针的return 0;
}
正确写法:
int main()
{int* p = (int*)malloc(100);if (p == NULL){//报错信息perror("malloc");return 1;}*p = 20;//释放free(p);p = NULL;return 0;
}
对动态开辟空间的越界访问
int main()
{int* p = (int*)malloc(40);if (p == NULL){return 1;}int i = 0;for (i = 0; i <= 10; i++){*(p + i) = i;//当循环到第11次时,就越界访问了}free(p);p = NULL;return 0;
}
对非动态开辟内存使用free释放
nt main()
{int a = 10;int* p = (int*)malloc(40);if (p == NULL){return 1;}//使用//...p = &a;//p指向的空间就不再是堆上的空间free(p);//程序崩溃p = NULL;return 0;
}
malloc/calloc/realloc 申请的空间如果不主动释放,出了作用域是不会被销毁的
释放的方式:
1.free主动释放
2.直到程序结束,才由操作符回收
使用free释放一块动态开辟内存的一部分
int main()
{int a = 10;int* p = (int*)malloc(40);if (p == NULL){return 1;}p++;//p不再指向动态内存的起始位置了free(p);//程序崩溃p = NULL;
}
对同一块动态内存多次释放
int main()
{int a = 10;int* p = (int*)malloc(40);if (p == NULL){return 1;}free(p);free(p);//重复释放程序崩溃p = NULL;return 0;
}
动态开辟内存忘记释放(内存泄露)
void test()
{int* p = (int*)malloc(100);if (p != NULL){*p = 20;}
}int main()
{test();while (1);
}
忘记释放不再使用的动态开辟的空间会造成内存泄露
切记:动态开辟的空间一定要释放,并且正确释放
5. 动态内存经典笔试题分析
题目1
void GetMemory(char* p)
{p = (char*)malloc(100);
}
void Test(void)
{char* str = NULL;GetMemory(str);strcpy(str, "hello world");printf(str);
}int main()
{Test();return 0;
}
解析:
- GetMemory函数采用值传递的方式,无法将malloc开辟空间的地址,放回str中,调用结束后str依然是NULL指针
- strcpy中使用了str,就是对NULL指针解引用操作,程序崩溃
- 内存泄露
正确代码
void GetMemory(char** p)
{*p = (char*)malloc(100);return p;
}
void Test(void)
{char* str = NULL;GetMemory(&str);strcpy(str, "hello world");printf(str);free(str);str = NULL;
}int main()
{Test();return 0;
}
题目2
char* GetMemory(void)//局部变量
{char p[] = "hello world";return p;//返回的是p首元素的地址
}
void Test(void)
{char* str = NULL;str = GetMemory();printf(str);//野指针
}int main()
{Test();return 0;
}
题目3
void GetMemory(char** p, int num)
{*p = (char*)malloc(num);
}
void Test(void)
{char* str = NULL;GetMemory(&str, 100);strcpy(str, "hello");printf(str);
}int main()
{Test();return 0;
}
题目4
void Test(void)
{char* str = (char*)malloc(100);strcpy(str, "hello");free(str);//释放了空间,但是里面还存放着地址,str也就变成了野指针if (str != NULL){strcpy(str, "world");//非法访问printf(str);}
}int main()
{Test();return 0;
}
6. 柔性数组
也许 你从未听说过柔性数组这个概念,但是它确实是存在的。C99中,结构中的最后一个元素允许是未知大小的数组,这就叫做柔性数组成员
- 在结构体中
- 最后一个成员
- 未知大小的数组
这个数组就是柔性数组!
例如:
struct st_type
{int i;int a[];//柔性数组成员
};
柔性数组的特点:
- 结构体中的柔性数组成员前面必须至少一个其他成员
- sizeof返回的这种结构体大小不包含柔性数组的内存
- 包含柔性数组成员的结构用malloc()函数进行内存的动态分配,并且分配的内存应该大于结构的大小,以适应柔性数组的预期大小
例如:
struct s
{int n;int arr[];
};int main()
{printf("%d\n", sizeof(struct s));//4个字节return 0;
}
柔性数组的使用
struct s
{char c;int n;int arr[];
};int main()
{//printf("%d\n", sizeof(struct s));//4个字节struct s*ps=(struct s*)malloc(sizeof(struct s) + 10 * sizeof(int));if (ps == NULL){perror("malloc");return 1;}ps->c = 'w';ps->n = 100;int i = 0;for (i = 0; i < 10; i++){ps->arr[i] = i;}//假设空间不足struct s* ptr=realloc(ps, sizeof(struct s) + 15 * sizeof(int));if (ptr != NULL){ps = ptr;}else {perror("realloc");}//继续使用//释放free(ps);ps = NULL;return 0;
}
7. 总结C/C++中内存区域划分
C/C++程序内存分配的几个区域:
- 栈区:在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等
- 堆区:一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。分配方式类似于链表
- 数据段(静态区):存放全局变量、静态数据。程序结束后由系统释放
- 代码段:存放函数体(类成员函数和全局函数)的二进制代码