书生·浦语大模型第四课作业

基础作业:

构建数据集,使用 XTuner 微调 InternLM-Chat-7B 模型, 让模型学习到它是你的智能小助手,效果如下图所示,本作业训练出来的模型的输出需要将不要葱姜蒜大佬替换成自己名字或昵称!

1.安装

# 如果你是在 InternStudio 平台,则从本地 clone 一个已有 pytorch 2.0.1 的环境:
/root/share/install_conda_env_internlm_base.sh xtuner0.1.9
# 如果你是在其他平台:
conda create --name xtuner0.1.9 python=3.10 -y# 激活环境
conda activate xtuner0.1.9
# 进入家目录 (~的意思是 “当前用户的home路径”)
cd ~
# 创建版本文件夹并进入,以跟随本教程
mkdir xtuner019 && cd xtuner019# 拉取 0.1.9 的版本源码
git clone -b v0.1.9  https://github.com/InternLM/xtuner
# 无法访问github的用户请从 gitee 拉取:
# git clone -b v0.1.9 https://gitee.com/Internlm/xtuner# 进入源码目录
cd xtuner# 从源码安装 XTuner
pip install -e '.[all]'

安装完后,就开始搞搞准备工作了。(准备在 oasst1 数据集上微调 internlm-7b-chat)

# 创建一个微调 oasst1 数据集的工作路径,进入
mkdir ~/ft-oasst1 && cd ~/ft-oasst1

2.3 微调

2.3.1 准备配置文件

XTuner 提供多个开箱即用的配置文件,用户可以通过下列命令查看

# 列出所有内置配置
xtuner list-cfg

在本案例中即:(注意最后有个英文句号,代表复制到当前路径)

cd ~/ft-oasst1
xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

配置文件名的解释:

xtuner copy-cfg internlm_chat_7b_qlora_oasst1_e3 .

模型名internlm_chat_7b
使用算法qlora
数据集oasst1
把数据集跑几次跑3次:e3 (epoch 3 )
2.3.2 模型下载

由于下载模型很慢,用教学平台的同学可以直接复制模型。

ln -s /share/temp/model_repos/internlm-chat-7b ~/ft-oasst1/
2.3.3 数据集下载

https://huggingface.co/datasets/timdettmers/openassistant-guanaco/tree/main

由于 huggingface 网络问题,咱们已经给大家提前下载好了,复制到正确位置即可:

cd ~/ft-oasst1
# ...-guanaco 后面有个空格和英文句号啊
cp -r /root/share/temp/datasets/openassistant-guanaco .

 此时,当前路径的文件应该长这样:

|-- internlm-chat-7b
|   |-- README.md
|   |-- config.json
|   |-- configuration.json
|   |-- configuration_internlm.py
|   |-- generation_config.json
|   |-- modeling_internlm.py
|   |-- pytorch_model-00001-of-00008.bin
|   |-- pytorch_model-00002-of-00008.bin
|   |-- pytorch_model-00003-of-00008.bin
|   |-- pytorch_model-00004-of-00008.bin
|   |-- pytorch_model-00005-of-00008.bin
|   |-- pytorch_model-00006-of-00008.bin
|   |-- pytorch_model-00007-of-00008.bin
|   |-- pytorch_model-00008-of-00008.bin
|   |-- pytorch_model.bin.index.json
|   |-- special_tokens_map.json
|   |-- tokenization_internlm.py
|   |-- tokenizer.model
|   `-- tokenizer_config.json
|-- internlm_chat_7b_qlora_oasst1_e3_copy.py
`-- openassistant-guanaco|-- openassistant_best_replies_eval.jsonl`-- openassistant_best_replies_train.jsonl
2.3.4 修改配置文件

修改其中的模型和数据集为 本地路径

cd ~/ft-oasst1
vim internlm_chat_7b_qlora_oasst1_e3_copy.py

在vim界面完成修改后,请输入:wq退出。假如认为改错了可以用:q!退出且不保存。当然我们也可以考虑打开python文件直接修改,但注意修改完后需要按下Ctrl+S进行保存。

减号代表要删除的行,加号代表要增加的行。

# 修改模型为本地路径
- pretrained_model_name_or_path = 'internlm/internlm-chat-7b'
+ pretrained_model_name_or_path = './internlm-chat-7b'# 修改训练数据集为本地路径
- data_path = 'timdettmers/openassistant-guanaco'
+ data_path = './openassistant-guanaco'

常用超参

参数名解释
data_path数据路径或 HuggingFace 仓库名
max_length单条数据最大 Token 数,超过则截断
pack_to_max_length是否将多条短数据拼接到 max_length,提高 GPU 利用率
accumulative_counts梯度累积,每多少次 backward 更新一次参数
evaluation_inputs训练过程中,会根据给定的问题进行推理,便于观测训练状态
evaluation_freqEvaluation 的评测间隔 iter 数
............

如果想把显卡的现存吃满,充分利用显卡资源,可以将 max_length 和 batch_size 这两个参数调大。

2.3.5 开始微调

训练:

xtuner train ${CONFIG_NAME_OR_PATH}

也可以增加 deepspeed 进行训练加速:

xtuner train ${CONFIG_NAME_OR_PATH} --deepspeed deepspeed_zero2

例如,我们可以利用 QLoRA 算法在 oasst1 数据集上微调 InternLM-7B:

# 单卡
## 用刚才改好的config文件训练
xtuner train ./internlm_chat_7b_qlora_oasst1_e3_copy.py# 多卡
NPROC_PER_NODE=${GPU_NUM} xtuner train ./internlm_chat_7b_qlora_oasst1_e3_copy.py# 若要开启 deepspeed 加速,增加 --deepspeed deepspeed_zero2 即可

 微调得到的 PTH 模型文件和其他杂七杂八的文件都默认在当前的 ./work_dirs 中。

跑完训练后,当前路径应该长这样:

|-- internlm-chat-7b
|-- internlm_chat_7b_qlora_oasst1_e3_copy.py
|-- openassistant-guanaco
|   |-- openassistant_best_replies_eval.jsonl
|   `-- openassistant_best_replies_train.jsonl
`-- work_dirs`-- internlm_chat_7b_qlora_oasst1_e3_copy|-- 20231101_152923|   |-- 20231101_152923.log|   `-- vis_data|       |-- 20231101_152923.json|       |-- config.py|       `-- scalars.json|-- epoch_1.pth|-- epoch_2.pth|-- epoch_3.pth|-- internlm_chat_7b_qlora_oasst1_e3_copy.py`-- last_checkpoint

2.3.6 将得到的 PTH 模型转换为 HuggingFace 模型,即:生成 Adapter 文件夹
mkdir hf
export MKL_SERVICE_FORCE_INTEL=1
export MKL_THREADING_LAYER=GNU
xtuner convert pth_to_hf ./internlm_chat_7b_qlora_oasst1_e3_copy.py ./work_dirs/internlm_chat_7b_qlora_oasst1_e3_copy/epoch_1.pth ./hf

2.4 部署与测试

2.4.1 将 HuggingFace adapter 合并到大语言模型:
xtuner convert merge ./internlm-chat-7b ./hf ./merged --max-shard-size 2GB
# xtuner convert merge \
#     ${NAME_OR_PATH_TO_LLM} \
#     ${NAME_OR_PATH_TO_ADAPTER} \
#     ${SAVE_PATH} \
#     --max-shard-size 2GB

2.4.2 与合并后的模型对话:
# 加载 Adapter 模型对话(Float 16)
xtuner chat ./merged --prompt-template internlm_chat# 4 bit 量化加载
# xtuner chat ./merged --bits 4 --prompt-template internlm_chat

2.4.3 Demo
  • 修改 cli_demo.py 中的模型路径
- model_name_or_path = "/root/model/Shanghai_AI_Laboratory/internlm-chat-7b"
+ model_name_or_path = "merged"
vim /root/code/InternLM/cli_demo.py

 微调过程截图:

 微调过程截图:

 微调过程截图:

 微调过程截图:

 训练完成后,AI人设已经变成了我定义的内容:目前只跑通了CLI命令行的测试验证效果:

 执行的脚本内容:cli_demo.py

import torch
from transformers import AutoTokenizer, AutoModelForCausalLMmodel_name_or_path = "/root/personal_assistant/config/work_dirs/hf_merge"tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='auto')
model = model.eval()system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""messages = [(system_prompt, '')]print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")while True:input_text = input("User  >>> ")input_text.replace(' ', '')if input_text == "exit":breakresponse, history = model.chat(tokenizer, input_text, history=messages)messages.append((input_text, response))print(f"robot >>> {response}")

 补充:

建议复制以下内容到 personal_assistant目录里,否则缺少必要的脚本

cp -r /root/code/InternLM/ /root/personal_assistant/code/InternLM/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/679704.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java是如何实现的平台无关?

🎬作者简介:大家好,我是小徐🥇☁️博客首页:CSDN主页小徐的博客🌄每日一句:好学而不勤非真好学者 📜 欢迎大家关注! ❤️ 1、什么是平台无关性 平台无关性就是一种语言在…

寒假作业

手写盗版微信登入界面 #include "mainwindow.h" #include "ui_mainwindow.h"MainWindow::MainWindow(QWidget *parent): QMainWindow(parent), ui(new Ui::MainWindow) {ui->setupUi(this);this->resize(421,575);this->setFixedSize(421,575);th…

接口测试框架分析

框架大体上已经写完了,不过说实话好多代码让我自己写我也写不出来,那该怎么办呢?很简单,把现在已经写好的代码保存起来,等用的时候拿出来复制粘贴就好了,如果你是大神,自己会写,那就…

TikTok:短视频时代的崛起

导言: TikTok,作为一款全球短视频社交应用,正风靡全球,引领着数字娱乐的新潮流。其简洁的用户界面、创意无限的短视频内容,以及强大的社交互动功能,使其成为全球数以亿计的用户喜爱的平台。 TikTok的特点&a…

H5 红色文字抖动网址发布页/引导页源码

H5 红色文字抖动网址发布页/引导页源码 源码介绍:一款红色文字抖动网页源码,可用于引导页或网址发布页。 下载地址: https://www.changyouzuhao.cn/10470.html

第9讲用户信息修改实现

用户信息修改实现 后端修改用户昵称: /*** 更新用户昵称* param wxUserInfo* param token* return*/ RequestMapping("/updateNickName") public R updateNickName(RequestBody WxUserInfo wxUserInfo,RequestHeader String token){if(StringUtil.isNot…

MySQL篇----第二十二篇

系列文章目录 文章目录 系列文章目录前言一、什么是表级锁二、什么是页级锁三、什么是行级锁四、什么是悲观锁前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女通用,看懂了就去分享给你的码吧。 一、…

selenium 驱动 Edge浏览器,解决selenium打开Edge浏览器闪退问题

一、Edge浏览器驱动下载 1、在设置中查看浏览器的版本号 2、在官网中进行对应下载 Microsoft Edge WebDriver - Microsoft Edge Developer 二、环境变量配置 1、打开设置界面 右击【此电脑】---选择【属性】----选择【高级系统设置】-----点击【环境变量】 2、变量设置 在…

SpringCloud-项目引入Nacos

一、安装Nacos服务 首先,我们需要从 Nacos 的官方网站下载发布版本。下载地址:Releases alibaba/nacos GitHub 选择合适的版本并下载,解压缩得到 Nacos 的安装包。 在解压后的 Nacos 目录中,找到 bin 文件夹。 用写字板编辑…

【玩转408数据结构】线性表——线性表的顺序表示(顺序表)

知识回顾 通过前文,我们了解到线性表是具有相同数据类型的有限个数据元素序列;并且,线性表只是一种逻辑结构,其不同存储形式所展现出的也略有不同,那么今天我们来了解一下线性表的顺序存储——顺序表。 顺序表的定义 …

【ES6】模块化

nodejs遵循了CommonJs的模块化规范 导入 require() 导出 module.exports 模块化的好处: 模块化可以避免命名冲突的问题大家都遵循同样的模块化写代码,降低了沟通的成本,极大方便了各个模块之间的相互调用需要啥模块,调用就行 …

力扣_字符串6—最小覆盖字串

题目 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。 示例 : 输入:s “ADOBECODEBANC”, t “ABC” 输出:“BANC” 解释:…

安装faiss环境教程

文章目录 打开环境安装faiss环境检查已安装的环境切换环境至faiss 打开环境 source activate # 打开环境安装faiss环境 conda create -n faiss_env # 安装faiss环境检查已安装的环境 conda info --envs # 检查已安装的环境切换环境至faiss conda a…

MySQL数据库⑧_索引(概念+理解+操作)

目录 1. 索引的概念和价值 1.1 索引的概念 1.2 索引的价值 2. 磁盘的概念 2.1 磁盘的结构 2.2 操作系统与磁盘交互的基本单位 2.3 MySQL与磁盘交互的基本单位 3. 索引的理解 3.1 主键索引现象和推导 3.2 索引采用的数据结构:B树 3.3 聚簇索引和非聚簇索引…

关于物理机ping不通虚拟机问题

方法一 设置虚拟机处于桥接状态即可:(虚拟机->设置->网络适配器),选择完确定,重启虚拟机即可。 方法二 如果以上配置还是无法ping通:(编辑->虚拟网络编辑器) 首先查看主机网…

###C语言程序设计-----C语言学习(12)#进制间转换,十进制,二进制,八进制,十六进制

前言:感谢您的关注哦,我会持续更新编程相关知识,愿您在这里有所收获。如果有任何问题,欢迎沟通交流!期待与您在学习编程的道路上共同进步。 计算机处理的所有信息都以二进制形式表示,即数据的存储和计算都采…

集合进阶(双列集合、HashMap、LinkedHashMap、TreeMap、Collections)

目录 一、双列集合 1、双列集合的特点 2、双列集合的常见API 3、Map的遍历方式 3.1第一种遍历方式:键找值(keySet) 3.2第二种遍历方式:键值对(entrySet)Entry:键值对对象 3.3第三种遍历方…

Prometheus服务器、Prometheus被监控端、Grafana、监控MySQL数据库、自动发现概述、配置自动发现、Alertmanager

目录 Prometheus概述 部署Prometheus服务器 环境说明: 配置时间 安装Prometheus服务器 添加被监控端 部署通用的监控exporter Grafana 概述 部署Grafana 展示node1的监控信息 监控MySQL数据库 配置MySQL 配置mysql exporter 配置mysql exporter 配置…

【java】11:IDEA常用快捷键+包

1. IDEA 常用快捷键 删除当前行, 默认是 ctrl Y 自己配置 ctrl d复制当前行, 自己配置 ctrl alt 向下光标补全代码 alt /添加注释和取消注释 ctrl / 【第一次是添加注释,第二次是取消注释】导入该行需要的类 先配置 auto import , 然后使用 altenter 即可快速…